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Abstract: The purpose of this paper is to use the notions of I-convergence
of sequences and a Musielak-Orlicz function, as well as a sequence of modulus
functions, to study certain difference sequence spaces, which are generalizations
of the spaces investigated in [13]. Among other results, we investigated some
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some inclusion relationships between these spaces under certain conditions on
the mathematical tools that define them.
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1. Introduction

Sequence spaces have been a topic of great importance in the development of
functional analysis from its origins to the present. The spaces ℓ∞, c, c0, ℓ1
and ℓp were the first spaces that obtained relevance for being used as cases
particular of Banach spaces. These sequence spaces have many applications
in various branches of functional analysis, among which we can highlight the
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theory of functions, the theory of locally convex spaces, matrix transformations,
and the theory of summability invariably (see [1], [2], [3], [11], [14], [15], [16]).

In 1971, Lindenstrauss and Tzafriri [9] used the notion of Orlicz function
to construct the sequence spaces

ℓM =

{

x ∈ ω :

∞
∑

k=1

M

(

|xk|

ρ

)

<∞ for some ρ > 0

}

,

where ω is the space of all complex sequences, and M is an Orlicz function.
The space ℓM with the norm

‖x‖ = inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. In their
work, Lindenstrauss and Tzafriri showed that each Orlicz sequence space ℓM
is isomorphic to ℓp for some p ≥ 1, answering positively a general conjecture
that each infinite-dimensional Banach space contains a closed subspace iso-
morphic to c0 or some ℓp, for a class of spaces. Later, the sequence spaces
defined by using Orlicz functions continued to be the center of attention for
many investigations, such as the work of Mursaleen et al. [12], in which
the difference sequence spaces C0(∆,M), C(∆, L) and ℓ∞(∆,M) were intro-
duced, where ∆xk = xk − xk+1, k = 1, 2, · · · . The sequence spaces described
above are norm spaces with a suitable norm ‖ · ‖∆ and also with this norm
ℓ∞(∆,M) is a Banach space [12]. Following this line of research, in 2015,
Raj and Kiliçman [13] used a seminormed space (X, q), where X is a com-
plex linear space and q the seminorm, a Musielak-Orlicz function M = (Mk)
(which is a sequence of Orlicz functions), a bounded sequence p = (pk) of non-
negative real numbers, and a sequence u = (uk) of positive real numbers, to
study the difference sequence spaces w0(M,∆n

m, p, q, u), w(M,∆n
m, p, q, u) and

w∞(M,∆n
m, p, q, u), showing that these spaces are linear and also that the space

w∞(M,∆n
m,

p, q, u) is paranormed. Similarly, in [13] also other spaces of sequences were
studied, which were defined by replacing the Musielak-Orlicz function with a
sequence of modulus functions in the spaces described above.

The notion of an ideal on a nonempty set was originally introduced in 1930,
by Kuratowski [8] in the classic text “Topologie I”. Since then many mathe-
maticians have based their research on generalizing concepts and properties of
general topology and mathematical analysis using the notion of ideal due to
Kuratowski. In particular, in 2000, Kostyrko et al. [6] used an ideal on the
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set N of the natural numbers to introduce the concept of I-convergence, as a
generalization of statistical convergence. In the last two decades, there have
been some studies on sequence spaces using the notion of I-convergence, as
can be seen in [18] and [19]. The purpose of this paper is to use the notions
of I-convergence of sequences and a Musielak-Orlicz function, as well as a se-
quence of modulus functions, to study certain difference sequence spaces, which
are generalizations of the spaces investigated in [13]. Among other results, we
investigated some algebraic and topological properties of these spaces. In ad-
dition, we establish some inclusion relationships between these spaces under
certain conditions on the mathematical tools that define them. This study pro-
vides new results that could be useful to address problems that arise in many
investigations with interest in sequence spaces and matrix transformations in
the context of summability theory.

2. Preliminaries

Let X be a linear space. A function f : X → R is called convex, if the following
inequality is hold:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ X and λ ∈ [0, 1].

Theorem 1. [7] If f is a convex function and f(0) = 0, then f(λx) ≤
λf(x), for all λ ∈ [0, 1].

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,
non-decreasing and convex, withM(0) = 0,M(x) > 0 for x > 0 andM(x) → ∞
as x → ∞. According to [7], we say that an Orlicz function M satisfies ∆2-

condition, if for each x ∈ [0,∞), there exists a constant K > 0 such that
M(2x) ≤ KM(x).

Theorem 2. [7] An Orliz function M satisfies ∆2-condition if and only if

for each x ∈ [0,∞) and each l > 1 there exists a constant R = R(l) > 0 such

that M(lx) ≤ RM(x) ≤ R lM(x).

Observe that the function M(x) = xp with x ∈ [0,∞) and 1 ≤ p <∞, is an
Orlicz function which satisfies ∆2-condition, because M(2x) = (2x)p = 2pxp =
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2pM(x). A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz

function.

Definition 3. A modulus function is a function f : [0,∞) → [0,∞) which
satisfies the following properties:

(1) f(x) = 0 if only if x = 0;

(2) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ [0,∞);

(3) f is increasing;

(4) f is continuous from right at 0.

From Definition 3, it follows that f must be continuous on [0,∞). A mod-

ulus function may be bounded or unbounded. For example, f(x) =
x

x+ 1
is

a modulus function bounded, while f(x) = xp, with 0 < p < 1, is a modulus
function unbounded. If f is a modulus function, then f(nx) ≤ nf(x) for each
n ∈ N.

Theorem 4. [5] Let f be a modulus function and let 0 < δ < 1. Then for

each x ≥ δ we have f(x) ≤ 2f(1) ·
x

δ
.

The following result is known as Maddox’s inequality, [10]. Let p = (pk) be
a bounded sequence such that 0 < pk ≤ sup pk = H <∞. Then,

|ak + bk|
pk ≤ D{|ak|

pk + |bk|
pk},

where D = max{1, 2H−1}. This inequality plays an important role in the
investigation of properties of many sequence spaces and in particular, those
that we will deal with in this work.

The notion of I-convergence is a generalization of the statistical convergence
which was introduced by Kostyrko et al. [6] using an ideal of subsets of N. Next,
we present the notion of I-convergence of sequences, but before we recall the
notion of an ideal of subsets of a given set, due to Kuratowski [8]. An ideal I
on a set X is a nonempty collection of subsets of X which satisfies the following
properties:

(1) If A ∈ I and B ⊂ A, then B ∈ I;

(2) If A ∈ I and B ∈ I, then A ∪B ∈ I.
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Let I be an ideal on X. According to [6], we say that I is non trivial if I 6= {∅}
and X /∈ I, while I is admissible if I is non trivial and {x} ∈ I for each x ∈ X.
Given a metric space (X, d) and a non trivial ideal I of subsets of N, we say
that a sequence (xk) of elements in X is I-convergent to L ∈ X if for each
ε > 0 the set A(ε) = {k ∈ N : d(xk, L) ≥ ε} belongs to I, see [6]. In this case,
the element L is called the I-limit of the sequence x = (xk) and is denote by
L = I- lim

k→∞
xk. If I is an admissible ideal then usual convergence in X implies

I-convergence in X; also, if I does not contain any infinite set, both concepts
coincide.

The notion the difference sequence spaces was introduced by Kızmaz [4],
when he studied the space Z(∆) = {x = (xk) ∈ w : ∆x ∈ Z}, where Z =
ℓ∞, c, c0, ∆x = xk−xk+1 for all k ∈ N, and w is the space of all real or complex
sequences. This notion was extended by Triparthy et al. [17] by introducing
a generalized difference operators as follows. If m,n are non-negative integers,
then we have sequence spaces Z(∆n

m) = {x = (xk) ∈ w : ∆n
mx ∈ Z}, for

Z = ℓ∞, c, c0, where ∆
n
mx = (∆n

mxk) =
(

∆n−1
m xk −∆n−1

m xk+m

)

and ∆0
mxk = xk

for each k ∈ N. The difference ∆n
mxk has the following binomial representation:

∆n
mxk =

n
∑

v=0

(−1)v
(

n

v

)

xk+mv.

In the sequel, we assume that X is a complex linear space with zero element
0 and let q be a seminorm on X. We consider sequences x = (xk), where (xk) ⊂
X, with the usual coordinatewise operations: αx = (αxk) and x+y = (xk+yk)
for each α ∈ C. For a scalar sequence λ = (λk) and x = (xk), we write
λx = (λkxk). Let p = (pk) be any bounded sequence of non-negative real
numbers, u = (uk) be a sequence of positive real numbers, and M = (Mk) be
a Musielak-Orlicz function. According to [13], we have the following difference
sequence spaces defined by using a Musielak-Orlicz function:

w(M,∆n
m, p, q, u) =

{

x = (xk) :
1

n

n
∑

k=1

ϑk(L, ρ) → 0 as n→ ∞,

for some L ∈ X, ρ > 0

}

,

w0(M,∆n
m, p, q, u) =

{

x = (xk) :
1

n

n
∑

k=1

ϑk(ρ) → 0 as n→ ∞,

for some ρ > 0

}

,
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w∞(M,∆n
m, p, q, u) =

{

x = (xk) : sup
1

n

n
∑

k=1

ϑk(ρ) <∞,

for some ρ > 0

}

,

where

ϑk(L, ρ) =

[

Mk

(

q(uk∆
n
mxk − L)

ρ

)]pk

and

ϑk(ρ) =

[

Mk

(

q(uk∆
n
mxk)

ρ

)]pk

.

Similarly, in [13] also some difference sequence spaces were introduced using
sequences of modulus functions, which we present below. Let F = (fk) be
a sequence of modulus functions, p = (pk) be any bounded sequence of non-
negative real numbers and u = (uk) be a sequence of positive real numbers. Let
(X, q) be a seminormed space by q. We define the following sequence spaces:

w(F,∆n
m, p, q, u) =

{

x = (xk) :
1

n

n
∑

k=1

θk(L, ρ) → 0 as n→ ∞,

for some L ∈ X, ρ > 0

}

,

w0(F,∆
n
m, p, q, u) =

{

x = (xk) :
1

n

n
∑

k=1

θk(ρ) → 0 as n→ ∞,

for some ρ > 0

}

,

w∞(F,∆n
m, p, q, u) =

{

x = (xk) : sup
1

n

n
∑

k=1

θk(ρ) <∞,

for some ρ > 0

}

,

where

θk(L, ρ) =

[

fk

(

q(uk∆
n
mxk − L)

ρ

)]pk

and

θk(ρ) =

[

fk

(

q(uk∆
n
mxk)

ρ

)]pk

.
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Motivated by the fact that the I-convergence of sequences is a natural gen-
eralization of the usual convergence, next, we use the notion of I-convergence
to construct and study new difference sequences spaces which generalize the
spaces introduced by Raj and Kiliçman [13].

3. Generalized difference sequence spaces defined by I-convergence
and a Musielak-Orlicz function

In this section, we consider a sequence of complex numbers u = (uk) such
that uk 6= 0 for each k, a bounded sequence of non-negative real numbers
p = (pk), a sequence of seminorms q = (qk) on X and a Musielak-Orlicz func-
tion M = (Mk). For each x = (xk) ⊂ X, we define the following sequence
spaces:

wI(M,∆n
m, p, q, u)

=

{

x : ∀ε > 0,

{

n ∈ N :
1

n

n
∑

k=1

Ωk(L, ρ) ≥ ε

}

∈ I,

for some L ∈ X, ρ > 0

}

,

wI
0 (M,∆n

m, p, q, u)

=

{

x : ∀ε > 0,

{

n ∈ N :
1

n

n
∑

k=1

Ωk(ρ) ≥ ε

}

∈ I,

for some ρ > 0

}

,

wI
∞(M,∆n

m, p, q, u)

=

{

x : ∃K > 0 such that

{

n ∈ N :
1

n

n
∑

k=1

Ωk(ρ) ≥ K

}

∈ I,

for some ρ > 0

}

,

where

Ωk(L, ρ) =

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]pk
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and

Ωk(ρ) =

[

Mk

(

qk(uk∆
n
mxk)

ρ

)]pk

.

Also, we define the spaces:

w∞(M,∆n
m, p, q, u) =

{

x : sup
n

1

n

n
∑

k=1

Ωk(ρ) <∞, for some ρ > 0

}

,

ηI(M,∆n
m, p, q, u) = wI(M,∆n

m, p, q, u) ∩ w∞(M,∆n
m, p, q, u) and

ηI0 (M,∆n
m, p, q, u) = wI

0 (M,∆n
m, p, q, u) ∩ w∞(M,∆n

m, p, q, u).

Remark 5. It is important to highlight the presence of I-convergence in
the definition of some of the above spaces. For example,

wI(M,∆n
m, p, q, u) =

{

x : I- lim
n→∞

1

n

n
∑

k=1

Ωk(L, ρ) = 0,

for some L ∈ X, ρ > 0

}

.

Theorem 6. wI(M,∆n
m, p, q, u) is a linear space over the field of complex

numbers C.

Proof. Assume that x = (xk), y = (yk) ∈ wI(M,∆n
m, p, q, u) and α, β ∈ C.

Let ε > 0 given. We show that there exist ρ > 0 and L ∈ X such that

A =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk)− L)

ρ

)]pk

≥ ε

}

∈ I.

Since x, y ∈ wI(M,∆n
m, p, q, u), there exist two positive numbers ρ1 and ρ2

such that

A1 =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L1)

ρ1

)]pk

≥
ε

2D

}

∈ I

for some L1 ∈ X and

A2 =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
myk − L2)

ρ2

)]pk

≥
ε

2D

}

∈ I



GENERALIZATION OF SOME TYPES OF DIFFERENCE... 23

for some L2 ∈ X, where D = max{1, 2H−1} and H = sup
k

pk ≥ pk > 0. Let

ρ = max{2|α|ρ1, 2|β|ρ2} and L = αL1 + βL2. Then, using the triangular in-
equality for qk and the fact that Mk is non-decreasing, we have

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk)− L)

ρ

)]pk

=
1

n

n
∑

k=1

[

Mk

(

qk(α(uk∆
n
mxk − L1) + β(uk∆

n
myk − L2))

ρ

)]pk

≤
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L1)

2ρ1
+
qk(uk∆

n
myk − L2)

2ρ2

)]pk

.

By the convexity of Mk, it follows that

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk)− L)

ρ

)]pk

≤
1

n

n
∑

k=1

[

1

2
Mk

(

qk(uk∆
n
mxk − L1)

ρ1

)

+
1

2
Mk

(

qk(uk∆
n
myk − L2)

ρ2

)]pk

≤
1

n

n
∑

k=1

1

2pk

[

Mk

(

qk(uk∆
n
mxk − L1)

ρ1

)

+ Mk

(

qk(uk∆
n
myk − L2)

ρ2

)]pk

.

Applying Maddox’s inequality, we obtain that

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk)− L)

ρ

)]pk

≤
1

n

n
∑

k=1

D

2pk

{[

Mk

(

qk(uk∆
n
mxk − L1)

ρ1

)]pk

+

[

Mk

(

qk(uk∆
n
myk − L2)

ρ2

)]pk
}
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≤
D

n

{

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L1)

ρ1

)]pk

+
n
∑

k=1

[

Mk

(

qk(uk∆
n
myk − L2)

ρ2

)]pk
}

.

If n ∈ Ac
1 ∩A

c
2, then of this last inequality, we conclude that

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk)− L)

ρ

)]pk

≤ D

{

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L1)

ρ1

)]pk

+
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
myk − L2)

ρ2

)]pk
}

< D
{ ε

2D
+

ε

2D

}

= ε,

which implies that n ∈ Ac. Therefore, (A1 ∪A2)
c = Ac

1 ∩A
c
2 ⊂ Ac and so, A ⊂

A1∪A2 ∈ I, it follows that A ∈ I. This shows that αx+βy ∈ wI(M,∆n
m, p, q, u)

and hence, wI(M,∆n
m, p, q, u) is a linear space.

Corollary 7. wI
0 (M,∆n

m, p, q, u) is a linear space over the field of complex

numbers C.

Theorem 8. wI
∞(M,∆n

m, p, q, u) is a linear space over the field of complex

numbers C.

Proof. Assume that x = (xk), y = (yk) ∈ w
I
∞(M,∆n

m, p, q, u) and α, β ∈ C.
We show that there exist two positive numbers K and ρ such that

A =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk))

ρ

)]pk

≥ K

}

∈ I.

By hypothesis, there exist four positive numbers K1, K2, ρ1 and ρ2 such that

A1 =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk)

ρ1

)]pk

≥
K1

2D

}

∈ I

and

A2 =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
myk)

ρ2

)]pk

≥
K2

2D

}

∈ I,
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where D = max{1, 2H−1} and H = sup
k

pk ≥ pk > 0. Let K = K1+K2

2 and

ρ = max{2|α|ρ1, 2|β|ρ2}. Then, we have

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk))

ρ

)]pk

≤
1

n

n
∑

k=1

[

Mk

(

qk(α(uk∆
n
mxk))

ρ
+
q(β(uk∆

n
myk))

ρ

)]pk

≤
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk)

2ρ1
+
qk(uk∆

n
myk)

2ρ2

)]pk

≤
1

n

n
∑

k=1

1

2pk

[

Mk

(

qk(uk∆
n
mxk)

ρ1

)

+Mk

(

qk(uk∆
n
myk)

ρ2

)]pk

.

By Maddox’s inequality, it follows that

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk))

ρ

)]pk

≤
1

n

n
∑

k=1

D

2pk

{[

Mk

(

qk(uk∆
n
mxk)

ρ1

)]pk

+

[

Mk

(

qk(uk∆
n
myk)

ρ2

)]pk
}

≤
D

n

{

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk)

ρ1

)]pk

+

n
∑

k=1

[

Mk

(

qk(uk∆
n
myk)

ρ2

)]pk
}

.

If n ∈ Ac
1 ∩A

c
2, then of this last inequality, we get that

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
m(αxk + βyk))

ρ

)]pk

≤ D

{

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk)

ρ1

)]pk
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+
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
myk)

ρ2

)]pk
}

< D

{

K1

2D
+
K2

2D

}

= K,

which implies that n ∈ Ac. Thus, (A1 ∪ A2)
c = Ac

1 ∩ Ac
2 ⊂ Ac and hence,

A ⊂ A1 ∪ A2 ∈ I, it follows that A ∈ I. This shows that αx + βy ∈
wI
∞(M,∆n

m, p, q, u) and hence, wI
∞(M,∆n

m, p, q, u) is a linear space over the
field of complex numbers C.

Corollary 9. ηI(M,∆n
m, p, q, u) and η

I
0 (M,∆n

m, p, q, u) are linear spaces

over the field of complex numbers C.

Theorem 10. ηI(M,∆n
m, p, q, u) and η

I
0 (M,∆n

m, p, q, u) are paranormed

spaces with paranorm defined by

ϕ(x) = inf







ρ
pk
H : sup

n

{

1

n

n
∑

k=1

Ωk(ρ)

}
1

H

≤ 1, ρ > 0







,

where H = max{1, supk pk}.

Proof. The proof is similar to that of [13, Theorem 2.2].

Theorem 11. Let M = (Mk) and M′ = (M ′
k) be two Musielak-Orlicz

functions which satisfies the ∆2-condition. The following statements hold:

(1) If p = (pk) is a bounded sequence of non-negative real numbers with H =
sup pk < ∞, then Z(M,∆n

m, p, q, u) ⊆ Z(M′ ◦M,∆n
m, p, q, u) for Z = wI

0 ,

wI , wI
∞, ηI , ηI0 .

(2) Z(M,∆n
m, p, q, u) ∩ Z(M

′,∆n
m, p, q, u) ⊆ Z(M + M′,∆n

m, p, q, u) for Z =
wI
0 , w

I , wI
∞, ηI , ηI0 .

Proof. (1) Let x = (xk) ∈ wI
0 (M,∆n

m, p, q, u). There exists ρ > 0 such that

I- lim
n→∞

1

n

n
∑

k=1

[

Mk

(

qk (uk∆
n
mxk)

ρ

)]pk

= 0.

Let ε > 0 given. Since each Mk is continuous from right at 0, there exists 0 <

δ < 1 such that 0 ≤ t ≤ δ implies thatMk(t) < ε. Let yk =Mk

(

qk (uk∆
n
mxk)

ρ

)
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for each k ∈ N. We define the sets N1 = {k ∈ {1, . . . , n} : yk ≤ δ} and
N2 = {k ∈ {1, . . . , n} : yk > δ}. Observe that

1

n

n
∑

k=1

[

M ′
k (yk)

]pk =
1

n

∑

k∈N1

[

M ′
k (yk)

]pk +
1

n

∑

k∈N2

[

M ′
k (yk)

]pk .

If k ∈ N1, then 0 ≤ yk ≤ 1. By Theorem 1, we have M ′
k (yk) ≤ yk ·M

′
k(1) and

so,

1

n

∑

k∈N1

[

M ′
k (yk)

]pk ≤
1

n

∑

k∈N1

[

M ′
k(1) · yk

]pk

≤ max
{

[M ′
k(1)]

H
}

·
1

n

∑

k∈N1

[yk]
pk .

For k ∈ N2, we have yk <
yk
δ
< 1 +

yk
δ
. Since each M ′

k is non-decreasing and

satisfies ∆2-condition for each k ∈ N, by Theorem 2, there exists a constant
R > 0 such that

M ′
k(yk) < M ′

k

(

1 +
yk
δ

)

=M ′
k

((

1 +
yk
δ

)

· 1
)

≤ R ·M ′
k(1) < R ·M ′

k(1) ·
yk
δ
.

Therefore,

1

n

∑

k∈N2

[

M ′
k (yk)

]pk ≤
1

n

∑

k∈N2

[

R ·M ′
k(1) ·

yk
δ

]pk

≤

(

R

δ

)H

·max
{

[M ′
k(1)]

H
}

·
1

n

∑

k∈N2

[yk]
pk .

Consequently, from of above results, it follows that

1

n

n
∑

k=1

[

M ′
k (yk)

]pk ≤

[

1 +

(

R

δ

)H
]

·max
{

[M ′
k(1)]

H
}

·
1

n

n
∑

k=1

[yk]
pk .

Since I- lim
n→∞

1

n

n
∑

k=1

[yk]
pk = 0, we conclude that

I- lim
n→∞

1

n

n
∑

k=1

[

M ′
k

(

Mk

(

qk (uk∆
n
mxk)

ρ

))]pk

= I- lim
n→∞

1

n

n
∑

k=1

[

M ′
k (yk)

]pk = 0.
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Thus, x = (xk) ∈ wI
0 (M

′ ◦M,∆n
m, p, q, u) and hence,

wI
0 (M,∆n

m, p, q, u) ⊆ wI
0 (M

′ ◦M,∆n
m, p, q, u).

(2) Let x = (xk) ∈ wI
0 (M,∆n

m, p, q, u) ∩ w
I
0 (M

′,∆n
m, p, q, u). There exist

two positive numbers ρ1 and ρ2 such that

I- lim
n→∞

1

n

n
∑

k=1

[

Mk

(

qk (uk∆
n
mxk)

ρ1

)]pk

= 0

and

I- lim
n→∞

1

n

n
∑

k=1

[

M ′
k

(

qk (uk∆
n
mxk)

ρ2

)]pk

= 0.

Let ρ = max{ρ1, ρ2} and M ′′
k =Mk +M ′

k. By Maddox’s inequality, we have

1

n

n
∑

k=1

[

M ′′
k

(

qk (uk∆
n
mxk)

ρ

)]pk

≤ D

{

1

n

n
∑

k=1

[

Mk

(

qk (uk∆
n
mxk)

ρ1

)]pk

+
1

n

n
∑

k=1

[

M ′
k

(

qk (uk∆
n
mxk)

ρ2

)]pk
}

.

From this inequality, we conclude that

I- lim
n→∞

1

n

n
∑

k=1

[

(

Mk +M ′
k

)

(

qk (uk∆
n
mxk)

ρ

)]pk

= 0

and hence, x = (xk) ∈ wI
0 (M+M′,∆n

m, p, q, u). Thus,

wI
0 (M,∆n

m, p, q, u) ∩ w
I
0 (M

′,∆n
m, p, q, u) ⊆ wI

0 (M+M′,∆n
m, p, q, u).

Theorem 12. If n,m ≥ 1, then the following inclusions hold:

(1) wI(M,∆n−1
m , p, q, u) ⊆ wI(M,∆n

m, p, q, u).

(2) wI
0 (M,∆n−1

m , p, q, u) ⊆ wI
0 (M,∆n

m, p, q, u).

(3) ηI(M,∆n−1
m , p, q, u) ⊆ ηI(M,∆n

m, p, q, u).

(4) ηI0 (M,∆n−1
m , p, q, u) ⊆ ηI0 (M,∆n

m, p, q, u).
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(5) wI
∞(M,∆n−1

m , p, q, u) ⊆ wI
∞(M,∆n

m, p, q, u).

Proof. We will only prove (1). The proof of (2) is an immediate consequence
of (1) and, the proofs of (3)-(5) are similar to the proof of (1). Suppose that
x = (xk) ∈ wI(M,∆n−1

m , p, q, u). Let ε > 0 given. We will show that there
exist ρ > 0 and L ∈ X such that

A =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]pk

≥ ε

}

∈ I.

Since x = (xk) ∈ wI(M,∆n−1
m , p, q, u), there exist ρ1 > 0 and L1 ∈ X such that

B =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n−1
m xk − L1)

ρ1

)]pk

≥
ε

2D

}

∈ I,

where D = max{1, 2H−1} y H = sup
k

pk ≥ pk > 0. Let ρ = 2ρ1 and L = 2L1.

Put yk = Mk

(

qk(uk∆
n
mxk − L)

ρ

)

for each k ∈ N. Since Mk is non-decreasing

and convex for each k ∈ N, we have

1

n

n
∑

k=1

[yk]
pk ]

≤
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n−1
m xk − L1)

2ρ1
+
qk(uk∆

n−1
m xk+m − L1)

2ρ1

)]pk

≤
1

n

n
∑

k=1

[

1

2
Mk

(

qk(uk∆
n−1
m xk − L1)

ρ1

)

+
1

2
Mk

(

qk(uk∆
n−1
m xk+m − L1)

ρ1

)]pk

≤
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n−1
m xk − L1)

ρ1

)

+ Mk

(

qk(uk∆
n−1
m xk+m − L1)

ρ1

)]pk

.

By Maddox’s inequality, it follows that

1

n

n
∑

k=1

[yk]
pk ≤ D

{

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n−1
m xk − L1)

ρ1

)]pk
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+
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n−1
m xk+m − L1)

ρ1

)]pk
}

.

If n ∈ Bc, then from above inequality, we get

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]pk

≤ D
{ ε

2D
+

ε

2D

}

= ε,

which implies that n ∈ Ac. Consequently, A ⊂ B ∈ I and hence, A ∈ I.
This shows that x = (xk) ∈ wI(M,∆n

m, p, q, u) and so, wI(M,∆n−1
m , p, q, u) ⊆

wI(M,∆n
m, p, q, u).

Theorem 13. If 0 < pk ≤ rk for each k ∈ N and
rk
pk

is bounded, then

Z(M,∆n
m, r, q, u) ⊂ Z(M,∆n

m, p, q, u) for each Z = wI , wI
0 .

Proof. Let x = (xk) ∈ wI(M,∆n
m, r, q, u). Given ǫ > 0 there exist ρ > 0

and L ∈ X such that

A =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]rk

≥ ε

}

∈ I.

That is,

I- lim
n→∞

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]rk

= 0.

Let tk =

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]rk

and λk =
pk
rk

, for each k ∈ N. Since

0 < pk ≤ rk, we have 0 < λk ≤ 1 for each k ∈ N. We choose 0 < λ < λk for
each k ∈ N. We define the sequences (ϕk) and (ψk) as follows:

ϕk =

{

0, si tk < 1
tk, si tk ≥ 1

and ψk =

{

tk, si tk < 1
0, si tk ≥ 1.

Obviously, tk = ϕk + ψk and tλk

k = ϕλk

k + ψλk

k , for each k ∈ N. According to

this, ϕλk

k ≤ ϕk ≤ tk and ψλk

k ≤ ψλ
k . By Hölder’s inequality, it follows that

1

n

n
∑

k=1

tλk

k

=
1

n

n
∑

k=1

(

ϕλk

k + ψλk

k

)

≤
1

n

n
∑

k=1

(

tk + ψλ
k

)
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=
1

n

n
∑

k=1

tk +
n
∑

k=1

(

1

n
ψk

)λ( 1

n

)1−λ

≤
1

n

n
∑

k=1

tk +

(

n
∑

k=1

1

n
ψk

)λ( n
∑

k=1

1

n

)1−λ

≤
1

n

n
∑

k=1

tk +

(

1

n

n
∑

k=1

tk

)λ

.

From the above inequality, we have

0 ≤
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]pk

=
1

n

n
∑

k=1

tλk

k ≤
1

n

n
∑

k=1

tk +

(

n
∑

k=1

tk

)λ

.

Since I- lim
n→∞

1

n

n
∑

k=1

tk = 0, we conclude that

I- lim
n→∞

1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk − L)

ρ

)]pk

= 0.

This shows that x = (xk) ∈ wI(M,∆n
m, p, q, u) and therefore,

wI(M,∆n
m, r, q, u) ⊂ wI(M,∆n

m, p, q, u).

Theorem 14. The sequence spaces wI
∞(M,∆n

m, p, q, u) and wI
0 (M,∆n

m,

p, q, u) are solid and hence monotone.

Proof. Let x = (xk) ∈ wI
∞(M,∆n

m, p, q, u) and let (αk) be a sequence of
scalars such that |αk| ≤ 1 for each k ∈ N. There exist two positive numbers ρ
and K such that

A =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk)

ρ

)]pk

≥ K

}

∈ I

Put

B =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mαkxk)

ρ

)]pk

≥ K

}

.

If n /∈ A, then
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1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mαkxk)

ρ

)]pk

≤
1

n

n
∑

k=1

|αk|
pk

[

Mk

(

qk(uk∆
n
mxk)

ρ

)]pk

≤
1

n

n
∑

k=1

[

Mk

(

qk(uk∆
n
mxk)

ρ

)]pk

< K,

which implies that n /∈ B. Thus, B ⊂ A ∈ I and hence, B ∈ I. This
shows that (αkxk) ∈ wI

∞(M,∆n
m, p, q, u) for all sequence of scalars (αk) with

|αk| ≤ 1 for each k ∈ N, whenever (xk) ∈ wI
∞(M,∆n

m, p, q, u). Therefore,
wI
∞(M,∆n

m, p, q, u) is solid.

The proof for wI
0 (M,∆n

m, p, q, u) is similar.

4. Generalized difference sequence spaces defined by I-convergence
and a sequence of modulus functions

In this section, we consider a sequence of modulus functions F = (fk), a
bounded sequence of non-negative real numbers p = (pk) and a sequence of
complex numbers u = (uk) with uk 6= 0. Le q = (qk) be a sequence of norms
on X. Now, we define the following spaces:

wI(F,∆n
m, p, q, u)

=

{

x : ∀ε > 0,

{

n ∈ N :
1

n

n
∑

k=1

Θk(L, ρ) ≥ ε

}

∈ I,

for some L ∈ X and some ρ > 0

}

,

wI
0 (F,∆

n
m, p, q, u)

=

{

x : ∀ε > 0,

{

n ∈ N :
1

n

n
∑

k=1

Θk(ρ) ≥ ε

}

∈ I,

for some ρ > 0

}

,
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wI
∞(F,∆n

m, p, q, u)

=

{

x : ∃K > 0 such that

{

n ∈ N :
1

n

n
∑

k=1

Θk(ρ) ≥ K

}

∈ I,

for some ρ > 0

}

.

where

Θk(L, ρ) =

[

fk

(

qk(uk∆
n
mxk − L)

ρ

)]pk

and

Θk(ρ) =

[

fk

(

qk(uk∆
n
mxk)

ρ

)]pk

.

Also, we define the following spaces:

w∞(F,∆n
m, p, q, u) =

{

x : sup
n

1

n

n
∑

k=1

Θk(ρ) <∞, for some ρ > 0

}

,

ηI(F,∆n
m, p, q, u) = wI(F,∆n

m, p, q, u) ∩w∞(F,∆n
m, p, q, u) and

ηI0 (F,∆
n
m, p, q, u) = wI

0 (F,∆
n
m, p, q, u) ∩ w∞(F,∆n

m, p, q, u).

The proofs of Theorems 6, 8 and 10 holds along the same lines for the
following two theorems and so we omit them.

Theorem 15. The sequence spaces wI(F,∆n
m, p, q, u), wI

0 (F,∆
n
m,

p, q, u), wI
∞(F,∆n

m, p, q, u), η
I(F,∆n

m, p, q, u) and ηI0 (F,∆
n
m, p, q, u) are linear

spaces over the complex field C.

Theorem 16. ηI(F,∆n
m, p, q, u) and ηI0 (F,∆

n
m, p, q, u) are paranormed

spaces with paranorm defined by

ϕ(x) = inf







ρ
pk
H : sup

n

{

1

n

n
∑

k=1

Θk(ρ)

}
1

H

≤ 1, ρ > 0







,

where H = max{1, supk pk}.

Theorem 17. Let F = (fk) and G = (gk) be two sequences of modulus

functions. For any two seminorms sequence q = (qk) and r = (rk), the following
properties are satisfied:
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(1) Z(F,∆n
m, q, u) ⊂ Z(G ◦ F,∆n

m, q, u) for Z = wI
0 , w

I , wI
∞, ηI , ηI0 .

(2) Z(F,∆n
m, p, q, u)∩Z(F,∆

n
m, p, r, u) ⊆ Z(F,∆n

m, p, q + r, u) for Z = wI
0 , w

I ,

wI
∞, ηI , ηI0 .

(3) Z(F,∆n
m, p, q, u) ∩ Z(G,∆n

m, p, q, u) ⊆ Z(F + G,∆n
m, p, q, u) for Z = wI

0 ,

wI , wI
∞, ηI , ηI0 .

Proof. (1) We will only show the inclusion wI
0 (F,∆

n
m, q, u) ⊂ wI

0 (F ◦G,∆n
m,

q, u). The other inclusions are showed analogously. Let (xk) ∈ wI
0 (F,∆

n
m, q, u).

Given ε > 0, we choose 0 < δ < 1 such that gk(t) <
ε

2
for each 0 ≤ t ≤ δ and

each k ∈ N. By hypothesis,

A =

{

n ∈ N :
1

n

n
∑

k=1

[

fk

(

qk(uk∆
n
mxk)

ρ1

)]

≥
ε

2R

}

∈ I,

where R = 2δ−1gk(1). Put yk = fk

(

qk(uk∆
n
mxk)

ρ

)

for each k ∈ N, and let

B =

{

n ∈ N :
1

n

n
∑

k=1

[gk (yk)] ≥ ε

}

.

We will show that B ⊂ A. Suppose that n /∈ A and we consider the sets
N1 = {k ∈ {1, . . . , n} : yk ≤ δ} and N2 = {k ∈ {1, . . . , n} : yk > δ}. Then,

1

n

n
∑

k=1

[gk (yk)] =
1

n

∑

k∈N1

[gk (yk)] +
1

n

∑

k∈N2

[gk (yk)] .

If k ∈ N1, then 0 ≤ yk ≤ δ and, by the continuity of gk, it follows that

∑

k∈N1

[gk (yk)] ≤
n
∑

k=1

[gk (yk)] <
nε

2
.

For k ∈ N2, we obtain by Theorem 4, the inequality gk(yk) ≤ 2gk(1) ·
yk
δ
. Thus,

∑

k∈N2

[gk (yk)] ≤ 2δ−1gk(1)
∑

k∈N2

yk ≤ 2δ−1gk(1)
n
∑

k=1

yk.

From the results previously deduced, it follows that

1

n

n
∑

k=1

[gk (yk)] <
1

n
·
(nε

2

)

+ 2δ−1gk(1) ·
1

n

n
∑

k=1

yk <
ε

2
+R ·

ε

2R
= ε,
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which implies that n /∈ B. Hence, B ⊂ A ∈ I and so, B ∈ I. This shows that
x = (xk) ∈ wI

0 (F ◦G,∆n
m, q, u).

(2) Let x = (xk) ∈ w
I
0 (F,∆

n
m, p, q, u)∩w

I
0 (F,∆

n
m, p, r, u). Then, there exist

two positive numbers ρ1 and ρ2 such that

I- lim
n→∞

1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ1

)]pk

= 0

and

I- lim
n→∞

1

n

n
∑

k=1

[

fk

(

rk (uk∆
n
mxk)

ρ2

)]pk

= 0.

Let ρ = max{ρ1, ρ2}. Then,

1

n

n
∑

k=1

[

fk

(

(qk + rk) (uk∆
n
mxk)

ρ

)]pk

=
1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ
+
rk (uk∆

n
mxk)

ρ

)]pk

≤
1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ

)

+ fk

(

rk (uk∆
n
mxk)

ρ

)]pk

≤
D

n

n
∑

k=1

{[

fk

(

qk (uk∆
n
mxk)

ρ

)]pk

+

[

fk

(

rk (uk∆
n
mxk)

ρ

)]pk
}

≤ D

{

1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ1

)]pk

+
1

n

n
∑

k=1

[

fk

(

rk (uk∆
n
mxk)

ρ2

)]pk
}

From this last inequality, we conclude that

I- lim
n→∞

1

n

n
∑

k=1

[

fk

(

(qk + rk) (uk∆
n
mxk)

ρ

)]pk

= 0

and hence, x = (xk) ∈ wI
0 (F,∆

n
m, p, q+r, u). This shows that w

I
0 (F,∆

n
m, p, q, u)∩

wI
0 (F,∆

n
m, p, r, u) ⊆ wI

0 (F,∆
n
m, p, q + r, u).
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(3) Let x = (xk) ∈ w
I
0 (F,∆

n
m, p, q, u)∩w

I
0 (G,∆

n
m, p, q, u). Then, there exist

two positive numbers ρ1 and ρ2 such that

I- lim
n→∞

1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ1

)]pk

= 0

and

I- lim
n→∞

1

n

n
∑

k=1

[

gk

(

qk (uk∆
n
mxk)

ρ2

)]pk

= 0.

Let ρ = max{ρ1, ρ2}. Then, applying Maddox’s inequality, we obtain that

1

n

n
∑

k=1

[

(fk + gk)

(

qk (uk∆
n
mxk)

ρ

)]pk

=
1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ

)

+ gk

(

qk (uk∆
n
mxk)

ρ

)]pk

≤
D

n

n
∑

k=1

{[

fk

(

qk (uk∆
n
mxk)

ρ

)]pk

+

[

gk

(

qk (uk∆
n
mxk)

ρ

)]pk
}

≤ D

{

1

n

n
∑

k=1

[

fk

(

qk (uk∆
n
mxk)

ρ1

)]pk

+
1

n

n
∑

k=1

[

gk

(

qk (uk∆
n
mxk)

ρ2

)]pk
}

.

From this inequality, we conclude that

I- lim
n→∞

1

n

n
∑

k=1

[

(fk + gk)

(

qk (uk∆
n
mxk)

ρ

)]pk

= 0

and therefore, x = (xk) ∈ w
I
0 (F +G,∆n

m, p, q, u). Thus,

wI
0 (F,∆

n
m, p, q, u) ∩ w

I
0 (G,∆

n
m, p, q, u) ⊆ wI

0 (F +G,∆n
m, p, q, u).

Corollary 18. Let G = (gk) be a sequence of modulus functions. Then,
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Z(∆n
m, q, u) ⊂ Z(G,∆n

m, q, u) for Z = wI
0 , w

I , wI
∞, ηI , ηI0 .
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