ANALYSIS OF INTERFACIAL FRACTAL
CONTACTS IN 3-DIMENSIONAL PACKING

Abstract

Asymptotic analysis of problems in domains with fractal interfaces or fractal limits is important for the study of phenomena related to heterogeneous materials and in particular to know the behavior of the faults in the geological zones.

We consider a dense network of elastic materials modelled by a dense network of elastic balls in the unit ball $B(0;1)$ of $\mathbb{R}^{n}$; $n = 3$, obtained from an 3-dimensional packing of elastic spherical balls. The purpose is to use $\Gamma$-convergence methods in order to study the asymptotic behaviour of the structure and deriving contact laws on the residual fractal interface. The problem considered here has other implications, such as the modeling of the behavior of composite materials or the study of displacement of a geological fault causing a generation of a new fractures.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 2
Year: 2022

DOI: 10.12732/ijam.v35i2.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] Y. Abouelhanoune, M. El Jarroudi, Interfacial contact model in a dense network of elastic materials, Functional Analysis and Its Applications, 55 (2021), 1–14.
  2. [2] D.R. Adams, N.G. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets, Indiana Univ. Math. Mech., 22, No 9 (1973), 873-900.
  3. [3] S.V. Anishchik, N.N. Medvedev, Three-dimensional Apollonian packing as a model for dense granular systems, Phys. Rev. Lett., 75 (1995), 4314-4317.
  4. [4] H. Attouch, Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, London (1984).
  5. [5] R.M. Baram, H.J. Herrmann, N. Rivier, Space-filling bearings in three dimensions, Phys. Rev. Lett., 92, No 4 (2004), Art. 044301.
  6. [6] R.M. Baram, H.J. Hermann, Self-similar space-filling packings in three dimensions fractals, Phys. Rev. Lett., 12, No 3 (2004), 293-301.
  7. [7] Y. Ben-Zion, C.G. Sammis, Characterization of fault zones, Pure and Applied Geophysics, 160 (2003), 677-715.
  8. [8] M. Borkovec,W. De Paris, R. Peikert, The fractal dimension of the Apollonian sphere packing, Fractals, 2, No 4 (1994), 521-526.
  9. [9] D.W. Boyd, The residual set dimension of Apollonian packing, Mathematika, 20 (1973), 170-174.
  10. [10] D.W. Boyd, An algorithm for generating the sphere coordinates in a threedimensional osculatory packing, Math. Comp, 27, No 122 (1973), 369-377.
  11. [11] D.W. Boyd, The sequence of radii of the Apollonian packing, Math. Comp., 39, No 159 (1982), 249-254.
  12. [12] A. Brillard, M. El Jarroudi, Fractal relaxed problems in elasticity, Integral Methods in Science and Engineering, 1 (2010), 75-84.
  13. [13] R. Capitanelli, M.R. Lancia, M.A. Vivaldi, Insulating layers of fractal type, Differ. Integ. Equs, 26, N 9/10 (2013), 1055-1076.
  14. [14] T. Carleman, Sur la rèsolution de certaines équations intègrales, Arkiv Math., Astron., Fysik, 16 (1922).
  15. [15] G. Dal Maso, An Introduction to Γ-Convergence, Ser. PNLDEA 8, Springer (1993).
  16. [16] M. El Jarroudi, Asymptotic analysis of contact problems between an elastic material and thin-rigid plates, Appl. Anal., 89, No 5 (2010), 693-715.
  17. [17] M. El Jarroudi, A. Brillard, Asymptotic behaviour of contact problems between two elastic materials through a fractal interface, J. Math. Pures Appl., 89 (2008), 505-521.
  18. [18] K. Falconer, Techniques in Fractal Geometry, J. Wiley and Sons, Chichester (1997).
  19. [19] H.J. Herrmann, G. Mantica, D. Bessis, Space-filling bearings, Phys. Rev. Lett, 65, No 26 (1990), 3223-3226.
  20. [20] H. Hertz, On the contact of elastic solids, J. Rein. Angew. Math., 92 (1882), 156-171.
  21. [21] P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88.
  22. [22] A. Jonsson, H. Wallin, Boundary value problems and Brownian motion on fractals, Chaos Solitons Frac., 8, No 2 (1997), 191-205.
  23. [23] J.C. Kim, K.H. Auh, D.M. Martin, Multi-level particle packing model of ceramic agglomerates, Model. Simul. Mater. Sci. Eng., 8 (2000), 159-168.
  24. [24] V.A. Kondratiev, O.A. Oleinik, On Kornı́s inequalities, C.R. Acad. Sci. Paris, Ser. I, 308 (1989), 483-487.
  25. [25] M.R. Lancia, A transmission problem with a fractal interface, Z. Anal. Anwend., 21 (2002), 113-133.
  26. [26] L. Landau, E. Lifchitz, Thèorie de l’élasticité, Editions Mir, Moscow (1967).
  27. [27] C. Marone, C.B. Raleigh, C.H. Scholz, Frictional behavior and constitutive modeling of simulated fault gouge, J. Geoph. Res., 95, No B5 (1990), 70077025.
  28. [28] R.D. Mauldin, M. Urbanski, Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packing, Adv. Math., 136 (1998), 26-38.
  29. [29] N.G. Meyers, Integral inequalities of Poincaré and Wirtinger type, Arch. Rat. Mech. Analysis, 68 (1978), 113-120.
  30. [30] U. Mosco, M.A. Vivaldi, Fractal reinforcement of elastic membranes. Arch. Rat. Mech. Analysis, 194, (2009), 49-74.
  31. [31] U. Mosco, M.A. Vivaldi, Thin fractal Obers, Math. Meth. Appl. Sci., 36 (2013), 2048-2068.
  32. [32] N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen (1963).
  33. [33] S. Roux, A. Hansen, H.J. Herrmann, A model for gouge deformation: implication for remanent magnetization, Geoph. Res. Lett., 20, No 14 (1993), 1499-1502.
  34. [34] V.S. Rychkov, Linear extension operators for restrictions of function spaces to irregular open sets, Stud. Math., 140, No 2 (2000), 141-162.
  35. [35] C.G. Sammis, R.L. Biegel, Fractals, fault-gouge, and friction, Pure and Applied Geophysics, 131, Nos 1/2 (1989), 255-271.
  36. [36] C.H. Scholz, The Mechanics of Earthquakes and Faulting, Cambridge University Press, London (2002).
  37. [37] S.J Steacy, C.G. Sammis, An automaton for fractal patterns of fragmentation, Nature, 353 (1991), 250-252.
  38. [38] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinan groups, Acta. Math., 153 (1984), 259-277.
  39. [39] D.M. Walker, A.Tordesillas, Topological evolution in dense granular materials: A complex networks perspective, Int. J. Solids Str., 47 (2010), 624-639.