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Abstract: This paper deals with a comparative study of different methods of
estimation for Gompertz-Lindley distribution. Simulation studies are carried
out and the most efficient estimator is the one whose bias is close to zero with
smaller mean-square error. A real data set is analyzed to illustrate the different
procedures.
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1. Introduction

In order to estimate the parameters of a model, different methods of estimation
have been proposed in the literature. The most popular is the method of
maximum likelihood. Comparative studies of various methods of estimation
have been carried out for different models. It has been observed that a particular
estimation procedure outperforms the others for a particular model.
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For example, [12] proposed a new estimation method for the Weibull dis-
tribution based on TL moments and L moments. Their estimation procedure
gives the best overall performance with respect to the biases of the estima-
tors of the shape and scale parameters. The use of a particular estimation
method depends on the area of application and the criteria of performance.
For example, a user may like to prefer a minimum variance unbiased estimator
even though it does not have a close form expression and it is minimum variance
among the unbiased estimators. [2] compared various estimation procedures for
the weighted exponential distribution and recommend the use of the maximum
likelihood or Bayes estimators for the model. [3] compared different estimators
for Rayleigh Distribution mainly with respect to the biases nd mean-squared
errors. They conclude that Bayes estimators with non informative priors work
very well. Other estimation methods for the generalized exponential distribu-
tion, weighted Lindley distribution, and Marshall-Olkin extended exponential
distribution can be found in [7], [9], and [8], respectively.

Compound distributions provide a tool for obtaining new parametric fami-
lies of distributions in terms of existing ones, see for example [1], [5] and [6].

In the present work, we have compared different methods of estimation
for Gompertz-Lindley (GL) distribution. The GL distribution was proposed
by [4] by compounding the frailty parameter of the Gompertz distribution by
Lindley distribution. Different methods of estimation are considered in Section
3. They include method of moments, method of maximum likelihood, method
of maximum product of spacings, method of ordinary least squares, method
of weighted least squares, method of percentiles, method of L2 distance and
method of Kullbeck-Lieber divergence of survival functions. Monte Carlo simu-
lation studies are carried out in Section 4 to compare the performance of these
estimators. In Section 5, we analyze a real data reported in [10] consisting
of 213 observations on the number of successive failres of the air conditioning
system of a fleet of 13 Boeing 720 jet planes. [4] fitted the GL distribution
to this data set using only the method of maximum likelihood. Finally, some
comments and conclusion are provided in Section 6.

2. The Gompertz-Lindley distribution

A continuous random variable X is said to have a Gompertz-Lindley (GL) dis-
tribution with shape parameter α and scale parameter λ, denoted by GL(α, λ),
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Figure 1: PDF and CDF of the GL distribution as a function
of α when λ = 1.

if its probability density function (PDF) is given by

f(x;α, λ) =
α2 λ

α+ 1

eλx(eλx + α+ 1)

(eλx + α− 1)3
, x > 0, (1)

where α, λ > 0.
The following is a summary of some properties of the GL distribution pre-

sented in [4].
(i) The PDF (1) is decreasing in x for all α ≤ 1 and unimodal for α > 1.
(ii) The cumulative distribution function (CDF) of the GL distribution is

given by

F (x;α, λ) = 1− α2(eλx + α)

(α+ 1)(eλx + α− 1)2
, x > 0. (2)

(iii) The quantile function (QF) of GL distribution is given by

F−1(q;α, λ) =
1

λ
ln

(
α2 + 2(1 − α2)q + α

√
α2 + 4(1 + α)q

2(1 + α)q

)
, (3)

where q = 1− q and 0 < q < 1.
In particular, the median of GL distribution is given by

median(X) =
1

λ
ln

(
1 + α

√
α2 + 2α+ 2

1 + α

)
. (4)

(iv) The rth moment (about 0) of GL disribution is given by:

E(Xr) =
r! α2

λr(α+ 1)(1 − α)2
[Lir−1(1− α)− α Lir(1− α)] . (5)
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where

Lis(z) =
z

Γ(s)

∫ ∞

0

ts−1

et − z
dt, s > 0, −∞ < z < 1, (6)

is the polylogarithm function. Note that,

Li1(z) = − ln(1− z), Li0(z) = z
∂Li1(z)

∂z
=

z

1− z
.

In particular, the first two moments, respectively, are given by

E(X) =
α
[
1− α+ α2 ln(α)

]

λ(α+ 1)(1 − α)2
, (7)

E(X2) =
2α2

λ2(α + 1)(1 − α)2
[− ln(α)− α Li2(1− α)] . (8)

The R functions dGL, pGL and qGL in Appendix can be used to calculate the
PDF, CDF and QF of the GL distribution, respectively.

3. Methods of Estimation

In this section, we describe the eight estimation methods considered in this
paper for estimating the unknown parameters α and λ of the GL distribution.

Let x1, x2, . . . , xn be a random sample from the GL(α, λ) distribution with
PDF (1).

3.1. Method of Maximum Likelihood

The maximum likelihood (ML) estimates α̂ML and λ̂ML of the parameters α

and λ, are obtained by maximizing, with respect to α and λ, the log-likelihood
function

ℓ(α, λ) =

n∑

i=1

ln f(xi;α, λ). (9)

3.2. Method of Moments

The method of moments (MM) estimates α̂MM and λ̂MM of the parameters α
and λ, are obtained by solving the system of equations:

E(X)|
(α,λ)↔(α̂MM ,λ̂MM )

= m1,
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E(X2)|
(α,λ)↔(α̂MM ,λ̂MM )

= m2,

where m1 = 1
n

∑n
i=1 xi and m2 = 1

n

∑n
i=1 x

2
i are the first and second sample

moments, respectively.
It follows that

λ̂MM =
α̂MM [1− α̂MM + α̂2

MM ln(α̂MM )]

m1(1 + α̂MM )(1 − α̂MM )2
, (10)

where α̂MM is the solution of the non-linear equation

2 m2
1 (α+ 1)(1 − α)2 [α Li2(1− α) + lnα] +m2

[
1− α+ α2 lnα

]2
= 0. (11)

3.3. Method of maximum product of spacings

Cheng and Amin (1979,1983) introduced the maximum product of spacings
(MPS) method as an alternative to MLE for the estimation of parameters of
continuous univariate distributions.

Define the uniform spacings of a random sample from the GL distribution
as

Di(α, λ) = F (xi:n;α, λ) − F (xi−1:n;α, λ), i = 1, 2, . . . , n, (12)

where xi:n, i = 1, 2, . . . , n, is the ith order statistic of a random sample x1, x2, . . . , xn.
Note that x0:n = 0 and xn+1:n = ∞. The maximum product of spacings (MPS)
estimates α̂MPS and λ̂MPS of the parameters α and λ, can be obtained by
maximizing, with respect to α and λ, the log-geometric mean of the spacings
function:

M(α, λ) =
1

n+ 1

n+1∑

i=1

lnDi(α, λ). (13)

Cheng and Amin (1983) showed that maximizing H as a method of param-
eter estimation is as efficient as MLE estimation and the MPS estimators are
consistent under more general conditions than the MLE estimators.

3.4. Method of Ordinary Least-Squares

The ordinary least-squares estimates α̂OLS and λ̂OLS of the parameters α and
λ can be obtained by minimizing, with respect to α and λ, the function

S(α, λ) =

n∑

i=1

[
F (xi:n;α, λ) −

i

n+ 1

]2
. (14)
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3.5. Method of Weighted Least-Squares

The weighted least-squares estimates α̂WLS and λ̂WLS of the parameters α and
λ can be obtained by minimizing, with respect to α and λ, the function

W (α, λ) =
n∑

i=1

(n+ 1)2 (n+ 2)

i(n− i+ 1)

[
F (xi:n;α, λ)−

i

n+ 1

]2
. (15)

3.6. Method of Percentiles

The percentile estimates α̂PC and λ̂PC of the parameters α and λ can be ob-
tained by minimizing, with respect to α and λ, the function

C(α, λ) =
n∑

i=1

[
xi:n − F−1

(
i

n+ 1
;α, λ

)]2
. (16)

3.7. Method of L2 distance

The L2 distance estimates α̂L2 and λ̂L2 of the parameters α and λ can be
obtained by minimizing, with respect to α and λ, the function

L(α, λ) =

∫ ∞

0
f2(t;α, λ) dt− 2

n

n∑

i=1

f(xi;α, λ). (17)

For more details about this estimation method, see [13].

3.8. Method of Kullback-Leibler divergence of survival function

The Kullback-Leibler divergence of Survival function (KLS) is given by

K(α, λ) =

∫ ∞

0
Sn(x) ln

Sn(x)

S(x;α, λ)
− [Sn(x)− S(x;α, λ)]dx,

=

n−1∑

i=1

(
1− i

n

)
ln

(
1− i

n

)
(xi+1:n − xi:n)

− 1

n

n∑

i=1

∫ xi

0
lnS(y;α, λ)dy − (x− µ), (18)

where S(x;α, λ) = 1− F (x;α, λ) and

Sn(x) =

n−1∑

i=0

(
1− i

n

)
I[xi:n,xi+1:n](x), (19)
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is the empirical survival function, with IA(·) as the indicator function.
The KLS estimates α̂KLS and λ̂KLS of the parameters α and λ can be

obtained by minimizing, with respect to α and λ, the function K(α, λ), see
[14].

4. Monte Carlo simulation study

The following algorithm for generating a random sample of size n,X1,X2, . . . ,Xn,
from the GL distribution is based on the quantile function given by equation
(3).

Algorithm

1. Generate Ui ∼ Uniform(0, 1), i = 1, 2, . . . , n.
2. Set

Xi =
1

λ
ln

(
α2 + 2(1 − α2)(1 − Ui) + α

√
α2 + 4(1 + α)(1 − Ui)

2(1 + α)(1 − Ui)

)
,

where i = 1, 2, . . . , n.
The R function rGL in Appendix is used to generate random data from the

GL distribution.

In this section, we evaluate the performance of the eight estimation meth-
ods presented in Section 3 through a Monte Carlo simulation study. The sim-
ulation experiment was repeated M = 10, 000 times each with sample size
n = 50, 100, 150, 200, 250, 300. The true values of the parameters are given by
(α, λ) : (2, 1), (2, 4), (4, 1), (4, 6).

Two quantities, the bias and mean squared error (MSE), were examined in
this Monte Carlo study, i.e.

Bias(ν̂) =
1

M

M∑

j=1

(ν̂j − ν), ν = α, λ,

MSE(ν̂) =
1

M

M∑

j=1

(ν̂j − ν)2, ν = α, λ,

where ν̂j is the estimate of the parameter ν in jth iteration, using a particular
estimation method, for each sample size n. All computations were performed
using the R software, [11], version 4.0.5.
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Considering the above quantities, the most efficient estimator will be the
one whose bias is closer to zero with smaller MSE.

Figures 2-3 show the biases of the estimates of the parameters versus sample
size n. From these figures, we observe that:

1. biases of the estimates of the parameters tend to zero as n increases, i.e.
the estimators are asymptotically unbiased.

2. estimation methods 1: MMO, 3: MPS, and 6: PCE produce negative bias
while the remaining 5 estimation methods produce positive bias.

3. estimation methods 3: MPS and 6: PCE produce smaller absolute bias
than other estimation methods, in particular for smaller values of n.

Figures 4-5 show the MSE of the estimates of the parameters versus sample
size n. From these figures, we observe that:

1. MSEs of the estimates of the parameters decrease as n increases

2. estimation methods 2: MLE and 7: L2D have the smallest MSE for all
sample sizes..

3. estimation methods 6: PCE and 8: KLS have the largest MSE for all
sample sizes.
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(d) α = 4 and λ = 6

Figure 2: Bias of α̂ (1: MMO, 2: MLE, 3: MPS, 4: OLS, 5:
WLS, 6: PCE, 7: L2D and 8: KLS).

5. Data analysis

In this section, we analyze a real data set representing 213 observations on
the number of successive failures of the air conditioning system of a fleet of 13
Boeing 720 jet airplanes, see [10]. [4] fitted the Gompertz-Lindley distribution
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(d) α = 4 and λ = 6

Figure 3: Bias of λ̂ (1: MMO, 2: MLE, 3: MPS, 4: OLS, 5:
WLS, 6: PCE, 7: L2D and 8: KLS).

to this data set using only the method of maximum likelihood.

Table 1 shows the different estimates of α and λ, using the eight methods
presented in this paper, Anderson-Darling and Cramér-von Mises goodness-of-
fit tests for the corresponding fitted GL distribution.

Table 1 shows that the WLS estimation method produces the smallest test
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(d) α = 4 and λ = 6

Figure 4: MSE of α̂ (1: MMO, 2: MLE, 3: MPS, 4: OLS, 5:
WLS, 6: PCE, 7: L2D and 8: KLS).

statistics and largest p-values of both goodness-of-fit tests. Thus, for this data
set, we can conclude that the WLS estimation method provides the best fit
(Rank 1) for this data set. This conclusion is also supported by the Probability-
Probability (PP) plots in Figure 6 and QQ-plots in Figure 7.

Finally, it is worth mentioning that by examining Table 1 and Figures 6-7,
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Figure 5: MSE of λ̂ (1: MMO, 2: MLE, 3: MPS, 4: OLS, 5:
WLS, 6: PCE, 7: L2D and 8: KLS).

the MLE estimation method comes second (Rank 2) to WLS method.



A COMPARATIVE STUDY OF VARIOUS METHODS... 359

Table 1: Fitted distributions and goodness-of-fit tests for
Proschan data set.

Method α̂ λ̂ AD p-value CvM p-value

1. MMO 0.8009 0.0074 0.883 0.424 0.103 0.570

2. MLE 0.8122 0.0069 0.440 0.808 0.052 0.867

3. MPS 0.7343 0.0065 0.504 0.742 0.053 0.858

4. OLS 0.7075 0.0064 0.621 0.628 0.070 0.754

5. WLS 0.7580 0.0065 0.434 0.814 0.049 0.880

6. PCE 0.8080 0.0067 0.491 0.756 0.072 0.737

7. L2D 1.1117 0.0096 0.902 0.413 0.082 0.681

8. KLS 0.9758 0.0078 0.699 0.560 0.124 0.478

6. Concluding remarks

Different methods of estimators of the parameters are considered to perform a
comparative study for the estimation of the parameters of Gompertz-Lindley
distribution. It has been pointed out that the performance of a particular
method depends on the model as well as on the criteria of comparison. It is
hoped that our study will prove helpful to the data analysts.
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Figure 6: PP-plots under eight estimation methods for
Proschan data set.
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Figure 7: QQ-plots under eight estimation methods for
Proschan data set.
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Appendix

This appendix presents the R codes used to calculate the density function (dGL),
cumulative distribution function (pGL), quantile function (qGL) and random
number generation (rGL) for the Gompertz-Lindley distribution.

## GL pdf --- Equation 1

dGL <- function(x, a, l) {

stopifnot(x > 0)

stopifnot(a > 0)

stopifnot(l > 0)

(a^2*l)/(a+1) * exp(l*x)*(exp(l*x)+a+1)/(exp(l*x)+a-1)^3

}

## GL cdf --- Equation 2

pGL <- function(x, a, l) {

stopifnot(x > 0)

stopifnot(a > 0)

stopifnot(l > 0)

1 - a^2/(a+1) * (exp(l*x)+a)/(exp(l*x)+a-1)^2

}

## GL quantile function --- Equation 3

qGL <- function(u, a, l) {

stopifnot(u > 0)

stopifnot(u < 1)

stopifnot(a > 0)

stopifnot(l > 0)

1/l * log(((a^2) + 2*(1-a^2)*(1-u)

+ a * sqrt(a^2+4*(1+a)*(1-u)))/(2*(1+a)*(1-u)))

}

## GL random deviates --- (see Section 4)

rGL <- function(n, a, l) {

stopifnot(a > 0)

stopifnot(l > 0)

F.x = runif(n, 0, 1)

qGL(F.x, a, l)

}
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