Let be a Banach space and let be the norm dual of . denotes the Banach space of all continuous real or complex valued functions on a compact Hausdorff space with the supremum norm. Suppose that is a Banach -module. In this paper, we characterize the order continuity of Banach -module if dual Banach space does not contain the space of all bounded sequences by using Arens multiplication.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] Yu.A. Abramovich, E.L. Arenson, A.K. Kitover, Banach C(K)-Modules
and Operators Preserving Disjointness, Pitman Research Notes in Math.
Ser., 277, Longman Scientific and Technical (1992).
[2] R. Arens, The adjoint of bilinear operations, Proc. Amer. Math. Soc., 2
(1951), 839-848.
[3] O. Gok, b-bimorphisms, International Journal of Applied Mathematics,
32, No 1 (2019), 45-50; doi: 10.12732/ijam.v32i1.4.
[4] D. Hadwin, M. Orhon, A noncommutative theory of Bade functionals,
Glasgow Math. J., 33 (1991), 75-81.
[5] D. Hadwin, M. Orhon, Reflexivity and approximate reflexivity for Boolean
algebras of projections, J. Funct. Anal., 87 (1989), 348-353.
[6] A. Kitover, M. Orhon, Reflexivity of Banach C(K)-modules via reflexivity
of Banach lattices, Positivity, 18, No 3 (2014), 475-488.
[7] A. Kitover, M. Orhon, Dedekind complete and order continuous Banach
C(K)-modules, In: Positivity and Noncommutative Analysis, Trends Math.
Birkhauser-Springer (2019), 281-294.
[8] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin (1991).
[9] G.Ya. Lozanovskii, On isomorphic Banach structure, Siberian Math. J.,
10, No 1 (1969), 64-68.
[10] H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin
(1974).
[11] W. Wnuk, Banach Lattices with Order Continuous Norm, Polish Scientific
Publishers PWN, Warszawa (1999).