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Abstract: A previous analysis by the author (published previously in this
Journal) showed that a limit formula could be deduced from Dorodnitzyn’s
compressible boundary layer model by the application of Bayada and Chambat’s
diffeomorphism. This article is the second part of the same research. Now, a
limit formula in terms of the shear stress is deduced from Dorodnitzyn’s shear
stress model.
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1. Introduction

Theorem 4 presents a proof of Dorodnitzyn’s derivation of a shear stress equa-
tion in a rectangular domain in terms of each variable’s belonging to a specific
functional space. Theorem 5 gives a new limit model in terms of the shear
stress.

We may recall that Dorodnitzyn reduced the original system of seven equa-
tions for seven variables to a quasi-linear problem for a transformation of the
shear stress in a new domain. Surely, there exists a mathematical formaliza-
tion preceding from the one given here, but the author could not find it in the
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literature. This might be a consequence of the fact that Dorodnitzyn’s work of
the subsequent years is partially classified [1, p.1973].

The proportion L >>> h > 0 allows the introduction of a small parameter
ǫ = h/L and the application of Bayada’s change of variables [2] to obtain a
Reynolds’ Limit Formula. Theorem 5 gives a demonstration of a Reynolds’
Limit Formula for Dorodnitzyn’s shear stress quasi-linear problem.

2. Problem Statement

From this point forward, W k,p (D) denotes the Sobolev Space of elements in
the Lebesgue Space Lp (D) on a domain D ⊂ R

2 with generalized derivatives
up to the order k, all of which belong to Lp(D). We might recall that [3], [4]:

Definition 1. A domain is an open and connected subset D ⊂ R
2 of the

Euclidean space R
2. A distribution g ∈ L1 (D) is a generalized derivative of f

with respect to x – also called weak or distributional, if for all analytic functions
ϕ with compact support in D, ϕ ∈ C∞

0 (D), we have:

∫∫

D
f
∂ϕ

∂x
dx dy = −

∫∫

D
g ϕ dx dy.

Analogously, it can be defined for other coordinate systems and orders. A
necessary and sufficient condition for the density of C∞

(

D̄
)

in a Sobolev Space
W k,2 (D) is unknown [4, p.10]. However, it is enough for the domain D to be
a rectangle. Therefore, the following results can be stated for a f̂ ∈ C∞

(

D̄
)

approximation of each distribution f ∈W k,p (D).

As a particular case, Leibnitz Rule for product differentiation is valid in
a non-empty open domain D ⊂ R

2 when both factors and all the generalized
derivatives involved are elements of L2(R) [3, p.11]. Moreover, there is a gen-
eralized Green’s Theorem [5, p. 121] that is valid for elements of the Sobolev
Spaces W 1,2 (D) in a bounded Lipschitz domain ([4]) D ⊂ R

2. This allows the
existence of a stream function, defined in Theorem 3.

The quasi-linear statement of the original problem in terms of the shear
stress is obtained by a series of two essential steps. First, Theorem 3 shows
that the original problem has a simplified expression as a system of just one
condition for the stream function ψ taken over the polygon Π = s(R) in terms of
Dorodnitzyn’s change of coordinates s(x, y) = (ℓ, s) of the original rectangular
domain R, where the convective derivative has an incompressible form.
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Second, Theorem 4 gives a formal proof of how this system can be written
in terms of a transformation that takes the original shear stress to a new domain,
an infinite strip band S : =

{

(ℓ, z) ∈ R
2 | (ℓ, s) ∈ Π, and z = s/ℓ1/2 ∈ (0,∞)

}

,
following a composition of the original stream fuction with Dorodnitzyn’s dif-
feomorphism s, and with Blasius’ adapted height normalization z = s/ℓ1/2,
[6]:

R
ψ̃

//

s

��

R

Π

ψ
>>

z

��
S

Ψ

FF✍
✍
✍
✍
✍
✍
✍

(x, y) ✤ //
❴

s

��

�� ��

�� ��Ψ(ℓ, z) = ψ̃ ◦ s−1 ◦ z−1 (ℓ, z)

(ℓ, s)
❴

z

��
(ℓ, z)

✼

Ψ

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇

Definition 2. Let L >>> h > 0, R = [0, L] × [0, h] and R̂ = R × [0, h]. If

ρ̂ ∈ L1
(

R̂× [0,∞); (0,∞)
)

such that ∂ρ̂/∂t = 0, then the restriction ρ = ρ̂|R,
ρ ∈ L2 (R; (0,∞)); a horizontal velocity component u ∈ L2 (R) with general-
ized derivatives ∂u/∂x, ∂u/∂y, ∂2u/∂y2 ∈ L2 (R); a vertical velocity com-
ponent v ∈ L2 (R); an absolute temperature T ∈ L2 (R; (0,∞)) such that
∂T/∂y, ∂2T/∂y2 ∈ L2 (R); a dynamic viscosity µ ∈ L2 (R); a pressure p ∈
L2 (R); and a thermal conductivity κ ∈ L2 (R). Additionally, assume that both
products ρ u, ρ v ∈ L2 (R), and that all of them have first order generalized
derivatives in L2 (R). This is, ρ, u, v, T , µ, p and κ are elements of the space
W 1,2 (R).

We need to retrieve not only Dorodnityzn’s stationary gaseous boundary
layer model with constant total energy [7] in order to give a formal proof of
his shear stress statement of the problem and deduce its corresponding limit
formula, but also to provide the functional spaces where this demostration
holds.

These are, Eqs. (1), (2), (3), (4), (5), (6), (7), and boundary conditions –
Eq. (8), (9), (10), (11), (13), (12), in a long rectangle R = (0, L) × (0, h) ∈ R

2

that represent the boundary layer region for L >>> h > 0. Dorodnitzyn’s model
is based on three simplified stationary Conservation of Mass, Conservation of
Momentum, and Conservation of Energy laws, Eqs. (1), (2) and (3),

∂ (ρ u)

∂x
+
∂ (ρ v)

∂y
= 0 , (1)
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ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= − ∂p

∂x
+

∂

∂y

(

µ
∂u

∂y

)

, y (2)

ρ

[

u
∂ (cp T )

∂x
+ v

∂ (cp T )

∂y

]

=
∂

∂y

[

κ
∂T

∂y

]

+ µ

(

∂u

∂y

)2

+
∂p

∂t
, (3)

for a stationary density ρ, a horizontal and vertical velocity components, u and
v, an absolute temperature T , a dynamic viscosity µ, a pressure p, and a thermal

conductivity κ whose main assumptions as elements of the Lebesgue space L2(R)
are described in Definition 2. Under these assumptions, the complete system is
made up of seven identities in the Lebesgue space L1(R).

The value cp is the specific heat at constant pressure. It is worth to notice
that there is a considerable difference between values of a gas constant for dry

air R̂d = 287 [J K−1kg−1], and a gas constant for saturated water vapor [8,
p.1047] R̂v = 461.50 [J K−1kg−1]; the specific heat at constant pressure for

dry air [9] cpd = 1004 [JK−1kg−1] and the specific heat at constant pressure

for water vapor [8] cpv = 1875 [JK−1kg−1]. Therefore, one question that
arises is if each model’s solution will continuously vary with modifications of
these constants and what consequences does it have on the boundary layer
separation.

Furthermore, we have four Ideal Gas Thermodynamic Laws, Eq. (4), (5),
(6), (7): the Prandtl number Pr = 1,

Pr =
cp µ

κ
= 1; (4)

the Equation of State for the Universal Gas constant R∗, the volume V of a
rectangular prism [0, L] × [0, h] × [0, h] ⊂ R

3 and the number of moles n of an
ideal gas corresponding to the volume V ,

p V = nR∗ T ; (5)

the adiabatic polytropic atmosphere [10, p. 35] where b = 1.405 and c are
constants,

p V b = c; (6)

and the Power-Law [11, p. 46]

µ

µh
=

(

T

Th

)
19
25

, (7)

with boundary conditions, Eqs. (8), (9), (10), (11), (13), (12):

(u, v)|{(x,h) : 0≤x≤L} = (−U, 0), (8)
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(u, v)|{(x,0): 0≤x≤L} = (0, 0), (9)

for a positive value of the free-stream velocity, U > 0, the no slip condition at
the surface, a free-stream temperature Th > 0, a free-stream dynamic viscosity

µh > 0,

T |{(x,h) : 0≤x≤L} = Th > 0, (10)

µ|{(x,h) : 0≤x≤L} = µh > 0, (11)

and a Neumann condition:

∂T

∂y

∣

∣

∣

∣

{(x,0): 0≤x≤L}

= 0. (12)

In [12], periodic conditions, such as the ones used in Chupin and Sart’s work
[13], were included at the vertical sections of the topological boundary ∂R, such
that for all y ∈ [0, h]:

(u (0, y) , 0) = (u (L, y) , 0) . (13)

Luigi Crocco’s Procedure, described in the original article [14], can be ap-
plied to the distributions ρ, u, v, T, p, κ, µ because the generalized derivatives of
the variables are elements of the Lebesgue space L2 (R), and we can proceed as
we would with classical derivatives to apply a generalized Leibnitz Rule for the
product [3, p.11], so that Eq. (3) is satisfied if and only if:

ρ

[

u
∂

∂x
+ v

∂

∂y

](

cp T +
u2

2

)

=
∂

∂y

[

µ
∂

∂y

(

cp T +
u2

2

)]

. (14)

Moreover, T (u) = T0
(

1− u2/(2cp T0)
)

where

T0 = Th + 1− (U2/2cp) > 0,

and i0 = cpT0 > 0. If we take into account the atmospheric pressure expres-
sion p(x, ŷ) = g

∫∞
ŷ ρ(x, y) dy for the standard gravity g and a linear decrease

T (x, y) = T0 − βy for a constant β > 0 for (x, y) ∈ R, then:

p ∼= c1
[

1−
(

U2/2i0
)]

b

(b−1) ,

and the density ρ(u) ∼= c2
[

1−
(

U2/2i0
)]

b

(b−1) /
[

1−
(

u2 (x, y) /2i0
)]

. From

Eq. (5), the dynamic viscosity µ(u) = c3
[

1−
(

u2/2i0
)]

19
25 for a gas constant

R̂ = R∗/M , the molecular weight M , p0 = (nR∗ T0) /V > 0, c1 = p0 T
2b
b−1

0 ,

c2 = c1 R̂
−1 T−1

0 , c3 = µh T
− 19

25
h T

19
25
0 .
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Theorem 3. Let ρ, u, v, T , p, κ, µ be as in Definition 2. Assume

p = c1
[

1−
(

U2/2i0
)]

b

(b−1) , ∂u/∂x = 0, and that the variables verify Eq. (1),

(2), (14), (4), (5), (6), (7) and (8), (9), (10), (11), (13), (12). Consider R
s //Π ,

(x, y) ✤
s //(ℓ, s) , where:

ℓ (x̂, ŷ) ✤ //
∫ x̂
0 p (x, ŷ) dx

and
s (x̂, ŷ) ✤ //

∫ ŷ
0 ρ (x̂, y) dy .

Denote Π = s (R) and σ0 = 1 − U2/(2i0). Then, there is a stream-function
ψ̃ ∈W 2,2 (R) such that ∂ψ̃/∂x = − ρ v, ∂ψ̃/∂y = ρ u, and a σ̃ = 1−

(

u2/2i0
)

∈
W 1,2 (R; (0,∞)), such that ψ : = ψ̃ ◦ s−1 ∈ W 2,2 (Π) and σ : = σ̃ ◦ s−1 ∈
W 1,2 (Π; (0,∞)) satisfy:

∂ψ

∂s

∂2ψ

∂l∂s
− ∂ψ

∂l

∂2ψ

∂s2
= c−1

1 c2 c3 σ
b

(b−1)
−1

0

∂

∂s

[

σ
19
25

−1 ∂
2ψ

∂s2

]

. (15)

Proof. First, we describe Dorodnitzyn’s diffeomorphism: The new domain’s,

Π, extremes are ℓM = ℓ(0, L) = c1 σ0 L and s(x, h) = c2 σ
b/(b−1)−1
0 h. The

partial derivatives of ℓ over R are ∂ℓ/∂x = c1σ0 and ∂ℓ/∂y = 0. Given
that ∂u/∂x = 0, the Dominated Convergence Theorem [15, p.44] implies that
∂s/∂x = 0. Moreover, ∂s/∂y = ρ. This may clarify the definition of s as the
entropy [16, p.432] and Dorodnitzyn’s statment of the problem as an entropy

method.
The Jacobian determinant |Ds| = c1 σ0 ρ > 0. Thus, the Inverse Function

Theorem [17] implies that s is a diffeomorphism that takes the rectangle R
into a polygonal domain Π. In this coordinate system, von Kármán’s Integral

Formula for a compressible fluid in R has an incompressible form in Π [18,
p.258].

Because of the zero divergence given in Eq. (1), the generalized Green
Theorem for Sobolev Spaces W 1,2 (R) on a rectangular domain R [5, p.121]
and the Poincaré Lemma allow us to define a stream function ψ̃ ∈ W 2,2 (R),

ψ̃(0,0)(x, y) =
∫ (x,y)
(0,0) −ρ v dx. The stream function ψ̃ is regarded in Π as ψ ∈

W 2,2 (Π). Once more, over the rectangular domain R, we can apply the Leib-
niz Rule for L2-distributions to see that, in terms of ψ, the system has an
incompressible non-linear expression for the convective derivative term in the
left hand side of Eq. (2) in Π as:

ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= c1 σ0 ρ

(

∂ψ

∂s

∂2ψ

∂ℓ∂s
− ∂ψ

∂ℓ

∂2ψ

∂s2

)

.
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This way, it is possible to cancel the density ρ factor with its correspondent
right hand side of Eq. (2) written in Π as:

∂

∂y

(

µ
∂u

∂y

)

= c2 c3 σ
b

b−1

0 ρ
∂

∂s

[

σ
19
25

−1 ∂
2ψ

∂s2

]

,

where ∂p/∂x = 0 because p is constant in R, and σ quantifies the amount
of kinetic energy is transformed into heat [18]. As a distribution, σ̃(u) ∈
W 1,2 (R; (0,∞)) and ∂2σ̃/∂y2 ∈ L2(R) directly from T ∈W 1,2 (R) and ∂2T/∂y2 ∈
L2 (R). Therefore, under the hypothesis of Definition 2 over the variables, the
original problem of Eq. (1), (2), (3), (4), (5), (6), (7), is transformed into the
condition given by Eq. (15) with inherited boundary conditions.

3. Dorodnitzyn’s shear stress problem

At this point, Dorodnitzyn adapts Blasius’ normalization z to express Eq. (15)
as an the Ordinary Differential Eq. (17), which he transforms into the Quasi-
Linear Parabolic Eq. (16).

Theorem 4. Under the same hypotheses of Theorem 3, let

S =
{

(ℓ, z) ∈ R
2 | (ℓ, s) ∈ Π and z = s/ℓ1/2 ∈ (0,∞)

}

,

Π
z //S , (ℓ, s) ✤

z //(ℓ, z) , z (ℓ, s) ✤ //s/
√
ℓ , Ψ: = ψ̃ ◦ s−1 ◦ z−1 ∈ W 4,1(S)

such that Ψ = f(z) g(ℓ), us : = u ◦ s−1 ◦ z−1, and

τs : =
(

1− u2s/(2i0)
)−6/25

∂2f/∂z2.

Then,

τs
∂2τs
∂u2s

= −1

2
c1 c

−1
2 c−1

3 σ
1− b

(b−1)

0 us

(

1− u2s
2i0

)−6/25

. (16)

Proof. First of all, the Jacobian determinant |Dz| = ℓ−1/2 > 0 for all ℓ > 0.
Therefore, z is a diffeomorphism from Π to S. Suppose Ψ = g · f is separable
as the product of two distributions, independently determined by the variables
ℓ and z, such that ∂Ψ/∂z = l1/2 ∂f/∂z. Then, the Leibniz Rule for a product
[19, p. 149] of g ∈ C1(S) and an integrable distribution f ∈ L1

loc(S) over an
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open set S 6= ∅, applied to ∂(g · f)/∂z and the condition ∂Ψ/∂z = ℓ1/2 ∂f/∂z
imply that g(ℓ) = ℓ1/2.

Second, if ψ ∈ W 2,2 (Π) is a weak solution of Eq.(15), then f ∈ W 4,1 (S),
such that ∂kΨ/∂zk = l1/2 ∂kf/∂zk for k ∈ {1, 2, 3, 4}, is a weak solution to the
ordinary differential equation:

−1

2
f
∂2f

∂z2
= c−1

1 c2 c3 σ
b

(b−1)
−1

0

∂

∂z

(

σ
− 6

25
s

∂2f

∂z2

)

, (17)

where σs = σ ◦ s−1 ◦z−1. In order to verify this, we write the left and right side
of Eq.(15) in terms of the new coordinates. The left side becomes:

∂ψ

∂s

∂2ψ

∂ℓ∂s
− ∂ψ

∂l

∂2ψ

∂s2
= −1

2
ℓ−1 f

∂2f

∂z2
; (18)

and, the right side is:

∂

∂s

(

σ−6/25 ∂
2ψ

∂s2

)

∂

∂s2
= ℓ−1 ∂

∂z

(

σ−6/25 ∂2f

∂z2

)

. (19)

This way, the factor ℓ−1 is nullified when Eq. (18) is equal to Eq. (19) and we
obtain Eq. (17).

Third, let us = u ◦ s−1 ◦ z−1, then f(z) =
∫ z
0 us (l, z

′) dz′: From the

stream-function’s separation of the first step, we have ∂f/∂z = ℓ−1/2 ∂Ψ/∂z.
Moreover, if f ∈ W 1,1(0,∞), then f(z) = f(0) +

∫ z
0 ∂f/∂z (z′) dz′. Because

of ψ̃(0, 0) = 0, ψ(0, 0) = Ψ(0.0) = f(0) = 0 and f(z) =
∫ z
0 ∂f/∂z (z′) dz′.

In addition, for each (ℓ, z) ∈ S: ∂Ψ/∂z (ℓ, z) = ℓ1/2 ∂ψ/∂s
(

z−1 (ℓ, z)
)

=

ℓ1/2 (1/ρ) ∂ψ̃/∂y
(

s−1
(

z−1 (ℓ, z)
))

= ℓ1/2 u ◦ s−1 ◦ z−1 (ℓ, z). This is,

∂Ψ/∂z (ℓ, z) = ℓ1/2 us (ℓ, z).
As a direct consequence of both relations, f(z) =

∫ z
0 us(ℓ, z

′) dz′ and

∂us/∂z = ∂2f/∂z2 Finally, if τs =
(

1− u2s/(2i0)
)−6/25

∂2f/∂z2, then:

∂2f/∂z2 =
(

1− u2s/(2i0)
)6/25

τs;

the left side of Eq. (17) is:

−1

2
f
∂2f

∂z2
= −1

2

(
∫ z

0
us

(

l, z′
)

dz′
) (

1− u2s
2i0

)6/25

τs;

and the right side of Eq. (17) becomes:

∂τs
∂z

=
∂τs
∂us

∂us
∂z

=

(

1− u2s
2i0

)6/25

τs
∂τs
∂us

.
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Thus, Eq. (17), in terms of τs and us, allows the elimination of the factor
(σ6/25 τs), present on both sides:

−1

2

∫ z

0
us

(

l, z′
)

dz′(σ6/25τs) = c−1
1 c2 c3 σ

b

(b−1)
−1

0 (σ6/25τs)
∂τs
∂us

. (20)

A derivation with respect to z on both sides of Eq. (20) leads to Eq. (16).

4. Dorodnitzyn’s Shear Stress Limit Formula

Theorem 5. Under the same hypotheses of Theorem 4, let R
φǫ

//Rǫ

for ǫ = h/L > 0, where we have (x, y) ✤
φǫ //(x/L, y/ (Lǫ)) , (x/L, y/ (Lǫ)) =

(x∗, y∗). Furthermore, assume ∂u/∂y(x, y) > 0 for each Lebesgue point (x, y) ∈
R. Then, there is a limit u∗, u∗ ∈ W 1,2(R), u∗ = limǫ→0 uǫ of uǫ = (1/L) u,
such that:

∂

∂us

(

1− (u∗)2

2i0

)19/25

= 0. (21)

Proof. Let σǫ = 1−
(

[Luǫ]2 /2i0

)

,

τs =
(

1− u2s/ (2i0)
)(19/25)−1

∂us/∂z

= c̃ x1/2 τ,

where ∂us/∂z = ℓ1/2ρ−1∂u/∂y, c̃ = c
1/2
1 c−1

2 σ
1/2−b/(b−1)
0 , and τ = µ ∂u/∂y.

Thus, Eq. (16), in terms of ǫ, becomes:

ǫ c̃ x1/2 (σǫ)19/25
∂τs
∂y

(

∂uǫ

∂y∗

)−1

− ǫ2
(

∂τs
∂y

)2(∂uǫ

∂y∗

)−2

= −1

2
c1 c

−1
2 c−1

3 σ
1− b

(b−1)

0 us

(

1− u2s
2i0

)−6/25

. (22)

In a previous article [12], we showed that, under these circumstances, ‖∇uǫ‖L2(R) ≤
(c2 U

3)/(2C) for a constant C that is independent of the parameter ǫ. This
way, the sequence (uǫ) is bounded in the Sobolev Space W 1,2 (R). Then, the
Rellich-Kondrachov compactness theorem [19, p.173,178] implies that there is
a subsequence that converges strongly in L2 (R), and the sequence ∂uǫ/∂y∗
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converges weakly in L2 (R) to a generalized derivative ∂u∗/∂y∗ of the limit
u∗ ∈ L2 (R). Hence, u∗ is a weak solution of Eq. (22), in L2 (R) when the
parameter ǫ tends to 0.

5. Conclusion

It is possible to deduce approximate shear stress formulas from the Dorod-
nitzyn’s gaseous boundary layer model and a Reynolds’ Limit Formula de-
veloped through a small parameter statement of the problem without taking
away the convective derivative non-linear term of the conservation of momen-
tum equation. These estimates provide a new family of deterministic boundary
layer separation models to be analysed.
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