DIRICHLET-NEUMANN SPECTRAL PROBLEMS FOR
THREE-DIMENSIONAL ELLIPTIC EQUATIONS
WITH SINGULAR COEFFICIENTS
Kamoliddin Karimov1, Asror Shokirov2 1Ferghana State University
Department of Differential Equations
150100, Fergana, UZBEKISTAN 2Fergana branch Tashkent University of IT
Department of Exact Sciences
150100, Fergana, UZBEKISTAN
In this paper, in domains consisting of parts of a sphere, the Dirichlet-Neumann spectral problems are formulated for elliptic type equations with two and three singular coefficients. The region of values of the parameter where there are no eigenvalues of the problem and a countable number of eigenvalues of the problem are found and eigenfunctions corresponding to the found eigenvalues are constructed.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] K. Heun, Zür Theorie der Riemann’schen Functionen Zweiter Ordnung mit
vier Verzweigungspunkten, Mathematische Annalen 33 (1889), 161-179.
[2] S.Yu. Slavyanov, W. Lay, Special Functions: A Unified Theory Based on
Singularities/ Foreword by A. Seeger, Oxford University Press, Oxford -
New York (2000).
[3] A.Ya. Kazakov, W. Lay, S.Yu. Slavyanov, Eigenvalue problems for equa-
tions of the Heun class, St. Petersburg Mathematical Journal, 8 (1996),
129-141.
[4] W. Lay, K. Bay, S. Yu. Slavyanov, Asymptotic and numeric of eigenvalues
of the double-confluent Heun equation, J. Phys. A: Math. Gen., 31 (1998),
4249-4261.
[5] A. Erdéyi et al. (Eds., on notes of G. Bateman), Higher Transcendental
Functions. Vol. 1: Hypergeometric Functions. Legendre Functions, Nauka,
Moscow (1973)
[6] R.S. Sokhonyan, D.Yu. Melikdzhanyan, A.M. Ishkhanyan, New solutions of
the general Heun equation in the form of series in hypergeometric functions,
Bull. of the NAS of Armenia, Physics, 40 (2005), 391-398.
[7] A.M. Ishkhanyan, Generalized hypergeometric solutions of the Heun
equation, J. Theoretical and Mathematical Physics, 202 (2020), 1-10;
https://doi.org/10.1134/S0040577920010018.
[8] N. Svartholm, Die Lösung der Fuchsschen Differentialgleichung zweiter
Ordnungdurch hypergeometrische Polynome, Math. Ann., 116 (1939), 413.
[9] A. Erdélyi, Certain expansions of solutions of the Heun equation, Quart.
J. Math. (Oxford), 15 (1944), 62.
[10] A. Erdélyi, The Fuchsian equation of second order with four singularities,
Duke Math. J., 9 (1942), 48.
[11] D. Schmidt, Die Lösung der linearen Differentialgleichung 2 Ordnung um
zwei einfache Singularitten durch Reihen nach hypergeometrischen Funk-
tionen, J. Reine Angew. Math., 309 (1979).
[12] E.G. Kalnins, W. Jr. Miller, Hypergeometric expansions of Heun polyno-
mials, SIAM J. Math. Anal., 22 (1991), 1450-1459.
[13] M.S. Salakhitdinov, A.K. Urinov, To the Spectral Theory of Equations of
Mixed Type, Mumtoz So’z, Tashkent (2010).
[14] S.M. Ponomarev, Spectral theory of the basic boundary value problem
for a mixed-type equation Lavrent’ev-Bitsadze, In: Dis. Dr. Phys.-Math.
Sciences, Moscow (1981).
[15] K.T. Karimov, Spectral problems for three-dimensional elliptic equations
with singular coefficients, Vestnik KRAUNC. Fiz.-Mat. Nauki, 18, No 2
(2017), 7-19; https://doi.org/10.18454/2079-6641-2017-18-2-7-19.
[16] A.K. Urinov, K.T. Karimov, The Dirichlet problem for a three-dimensional
equation of mixed type with three singular coefficients, Bull. of Samara
State Technical University. Ser. Phys.-Math. Nauki, 21 (2017), 665-683;
https://doi.org/10.14498/vsgtu1559.
[17] A.K. Urinov, K.T. Karimov, The unique solvability of bound-
ary value problems for a 3D elliptic equation with three sin-
gular coefficients,
Russian Mathematics,
63 (2019),
61-72;
https://doi.org/10.3103/S1066369X19020087.
[18] K.T. Karimov, The Keldysh problem for a three-dimensional mixed-type
equation with three singular coefficients in a semi-infinite parallelepiped,
Bull. of Udmurt University. Mat. Fur. Computer. Nauki, 30 (2020), 31-48;
https://doi.org/10.35634/vm200103,
[19] A.K. Urinov, K.T. Karimov, Nonlocal boundary value problems for a
three-dimensional elliptic equation with singular coefficients in a semi-
infinite parallelepiped, Siberian Electr. Math. Reports, 17 (2020), 161-178;
https://doi.org/10.33048/semi.2020.17.012.
[20] K.T. Karimov, Nonlocal problem for an elliptic equation with singular co-
efficients in a semi-infinite parallelepiped, Lobachevskii J. of Mathematics,
41 (2020), 46-57; https://doi.org/10.1134/S1995080220010084.
[21] A.K. Urinov, K.T. Karimov, The Dirichlet problem for an ellip-
tic equation with singular coefficients in a semi-cylindrical do-
main, Lobachevskii J. of Mathematics, 41 (2020), 1891-1902;
https://doi.org/10.1134/S1995080220090292.
[22] G.M. Fikhtengolts, Differential and Integral Calculus Courses, Fizmatlit,
Moscow (2001).
[23] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Vol.
2: Special Functions, Fizmatlit, Moscow (2003).
[24] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Vol.
3: More Special functions, Fizmatlit, Moscow (2003).