DIRICHLET-NEUMANN SPECTRAL PROBLEMS FOR
THREE-DIMENSIONAL ELLIPTIC EQUATIONS
WITH SINGULAR COEFFICIENTS

Abstract

In this paper, in domains consisting of parts of a sphere, the Dirichlet-Neumann spectral problems are formulated for elliptic type equations with two and three singular coefficients. The region of values of the parameter where there are no eigenvalues of the problem and a countable number of eigenvalues of the problem are found and eigenfunctions corresponding to the found eigenvalues are constructed.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 4
Year: 2022

DOI: 10.12732/ijam.v35i4.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] K. Heun, Zür Theorie der Riemann’schen Functionen Zweiter Ordnung mit vier Verzweigungspunkten, Mathematische Annalen 33 (1889), 161-179.
  2. [2] S.Yu. Slavyanov, W. Lay, Special Functions: A Unified Theory Based on Singularities/ Foreword by A. Seeger, Oxford University Press, Oxford - New York (2000).
  3. [3] A.Ya. Kazakov, W. Lay, S.Yu. Slavyanov, Eigenvalue problems for equa- tions of the Heun class, St. Petersburg Mathematical Journal, 8 (1996), 129-141.
  4. [4] W. Lay, K. Bay, S. Yu. Slavyanov, Asymptotic and numeric of eigenvalues of the double-confluent Heun equation, J. Phys. A: Math. Gen., 31 (1998), 4249-4261.
  5. [5] A. Erdéyi et al. (Eds., on notes of G. Bateman), Higher Transcendental Functions. Vol. 1: Hypergeometric Functions. Legendre Functions, Nauka, Moscow (1973)
  6. [6] R.S. Sokhonyan, D.Yu. Melikdzhanyan, A.M. Ishkhanyan, New solutions of the general Heun equation in the form of series in hypergeometric functions, Bull. of the NAS of Armenia, Physics, 40 (2005), 391-398.
  7. [7] A.M. Ishkhanyan, Generalized hypergeometric solutions of the Heun equation, J. Theoretical and Mathematical Physics, 202 (2020), 1-10; https://doi.org/10.1134/S0040577920010018.
  8. [8] N. Svartholm, Die Lösung der Fuchsschen Differentialgleichung zweiter Ordnungdurch hypergeometrische Polynome, Math. Ann., 116 (1939), 413.
  9. [9] A. Erdélyi, Certain expansions of solutions of the Heun equation, Quart. J. Math. (Oxford), 15 (1944), 62.
  10. [10] A. Erdélyi, The Fuchsian equation of second order with four singularities, Duke Math. J., 9 (1942), 48.
  11. [11] D. Schmidt, Die Lösung der linearen Differentialgleichung 2 Ordnung um zwei einfache Singularitten durch Reihen nach hypergeometrischen Funk- tionen, J. Reine Angew. Math., 309 (1979).
  12. [12] E.G. Kalnins, W. Jr. Miller, Hypergeometric expansions of Heun polyno- mials, SIAM J. Math. Anal., 22 (1991), 1450-1459.
  13. [13] M.S. Salakhitdinov, A.K. Urinov, To the Spectral Theory of Equations of Mixed Type, Mumtoz So’z, Tashkent (2010).
  14. [14] S.M. Ponomarev, Spectral theory of the basic boundary value problem for a mixed-type equation Lavrent’ev-Bitsadze, In: Dis. Dr. Phys.-Math. Sciences, Moscow (1981).
  15. [15] K.T. Karimov, Spectral problems for three-dimensional elliptic equations with singular coefficients, Vestnik KRAUNC. Fiz.-Mat. Nauki, 18, No 2 (2017), 7-19; https://doi.org/10.18454/2079-6641-2017-18-2-7-19.
  16. [16] A.K. Urinov, K.T. Karimov, The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients, Bull. of Samara State Technical University. Ser. Phys.-Math. Nauki, 21 (2017), 665-683; https://doi.org/10.14498/vsgtu1559.
  17. [17] A.K. Urinov, K.T. Karimov, The unique solvability of bound- ary value problems for a 3D elliptic equation with three sin- gular coefficients, Russian Mathematics, 63 (2019), 61-72; https://doi.org/10.3103/S1066369X19020087.
  18. [18] K.T. Karimov, The Keldysh problem for a three-dimensional mixed-type equation with three singular coefficients in a semi-infinite parallelepiped, Bull. of Udmurt University. Mat. Fur. Computer. Nauki, 30 (2020), 31-48; https://doi.org/10.35634/vm200103,
  19. [19] A.K. Urinov, K.T. Karimov, Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi- infinite parallelepiped, Siberian Electr. Math. Reports, 17 (2020), 161-178; https://doi.org/10.33048/semi.2020.17.012.
  20. [20] K.T. Karimov, Nonlocal problem for an elliptic equation with singular co- efficients in a semi-infinite parallelepiped, Lobachevskii J. of Mathematics, 41 (2020), 46-57; https://doi.org/10.1134/S1995080220010084.
  21. [21] A.K. Urinov, K.T. Karimov, The Dirichlet problem for an ellip- tic equation with singular coefficients in a semi-cylindrical do- main, Lobachevskii J. of Mathematics, 41 (2020), 1891-1902; https://doi.org/10.1134/S1995080220090292.
  22. [22] G.M. Fikhtengolts, Differential and Integral Calculus Courses, Fizmatlit, Moscow (2001).
  23. [23] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Vol. 2: Special Functions, Fizmatlit, Moscow (2003).
  24. [24] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Vol. 3: More Special functions, Fizmatlit, Moscow (2003).