In this research paper, we present a second order non-oscillatory central scheme. Our aim is to solve a non-local conservation law arising in traffic flow models with non-local mean velocity. The proposed scheme proves to be more accurate. It, in some way, resembles the Godunov-type scheme. Yet, it is better than the widely used Lax-Friedrich-type scheme. To prove our thesis, We conduct a series of numerical experiments in which we perform the following: A) We study and test the ratio of accuracy of our second-order scheme. B) We make clear and demonstrate the non-oscillatory character. C) We examine the convergence of the non-local solution to the local solution.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. Aggarwal, R. M. Colombo, P. Goatin, Nonlocal systems of conservation
laws in several space dimensions, SIAM J. Numer. Anal., 53, No 2 (2015),
963-983.
[2] P. Amorim, R. Colombo, A. Teixeira, On the numerical integration of
scalar nonlocal conservation laws, ESAIM M2AN, 49, No 1 (2015), 19-37.
[3] F. Betancourt, R. Burger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity, 24, No 3 (2011),
855-885.
[4] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local
flux arising in traffic flow modeling, Numer. Math., 132, No 2 (2016),
217-241.
[5] J. A. Carrillo, S. Martin, M.T. Wolfram, An improved version of the
Hughes model for pedestrian flow, Math. Models Methods Appl. Sci., 26,
No 4 (2016), 671-697.
[6] F. A. Chiarello, P. Goatin, Global entropy weak solutions for general
non-local traffic flow models with anisotropic kernel, ESAIM: M2AN;
doi:10.1051/m2an/2017066.
[7] R. M. Colombo, M. Garavello, M. Lecureux-Mercier, A class of nonlocal
models for pedestrian traffic, Math. Models Methods Appl. Sci., 22, No 4
(2012), 1150023.
[8] R. M. Colombo, F. Marcellini, Nonlocal systems of balance laws in several space dimensions with applications to laser technology, J. Differential
Equations, 259, No 11 (2015), 6749-6773.
[9] R. Eymard, T. Gallouet, R. Herbin, Finite volume methods, Handbook
Numer. Anal., 7 (2000), 713-1018.
[10] J. Friedrich, O. Kolb, S. Gottlich, A Godunov type scheme for a class of
LWR traffic flow models with non-local flux, Netw. Heterog. Media., 13,
No 4 (2018), 531-547.
[11] P. Goatin, S. Scialanga, Well-posedness and finite volume approximations
of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media., 11, No 1 (2016), 107-121.
[12] E. Godlewski, P.A. Raviart, Hyperbolic Systems of Conservation Laws,
Ellipses (1991).
[13] S. Gottlieb, D. I. Ketcheson, C. W. Shu, High order strong stability preserving time discretizations, J. Sci. Comput., 38, No 3 (2009), 251-289.
[14] R. M. Colombo, M. Herty, M. Mercier, Control of the continuity equation
with a non local flow, ESAIM Control Optim. Calc. Var., 17, No 2 (2011),
353-379.
[15] M. Gugat, A. Keimer, G. Leugering, Z. Wang, Analysis of a system of
nonlocal conservation laws for multi-commodity flow on networks, Netw.
Heterog. Media., 10, No 4 (2015), 749-785.
[16] A. Kurganov, A. Polizzi, Non-oscillatory central schemes for a traffic flow
model with Arrehenius look-ahead dynamics, Netw. Heterog. Media., 4,
No 3 (2009), 431-451.
[17] H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic
conservation laws, J. Comput. Phys., 87 (1990), 408-463.