NON OSCILLATORY CENTRAL SCHEMES FOR
GENERAL NON-LOCAL TRAFFIC FLOW MODELS

Abstract

In this research paper, we present a second order non-oscillatory central scheme. Our aim is to solve a non-local conservation law arising in traffic flow models with non-local mean velocity. The proposed scheme proves to be more accurate. It, in some way, resembles the Godunov-type scheme. Yet, it is better than the widely used Lax-Friedrich-type scheme. To prove our thesis, We conduct a series of numerical experiments in which we perform the following: A) We study and test the ratio of accuracy of our second-order scheme. B) We make clear and demonstrate the non-oscillatory character. C) We examine the convergence of the non-local solution to the local solution.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 4
Year: 2022

DOI: 10.12732/ijam.v35i4.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Aggarwal, R. M. Colombo, P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53, No 2 (2015), 963-983.
  2. [2] P. Amorim, R. Colombo, A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM M2AN, 49, No 1 (2015), 19-37.
  3. [3] F. Betancourt, R. Burger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity, 24, No 3 (2011), 855-885.
  4. [4] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132, No 2 (2016), 217-241.
  5. [5] J. A. Carrillo, S. Martin, M.T. Wolfram, An improved version of the Hughes model for pedestrian flow, Math. Models Methods Appl. Sci., 26, No 4 (2016), 671-697.
  6. [6] F. A. Chiarello, P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: M2AN; doi:10.1051/m2an/2017066.
  7. [7] R. M. Colombo, M. Garavello, M. Lecureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22, No 4 (2012), 1150023.
  8. [8] R. M. Colombo, F. Marcellini, Nonlocal systems of balance laws in several space dimensions with applications to laser technology, J. Differential Equations, 259, No 11 (2015), 6749-6773.
  9. [9] R. Eymard, T. Gallouet, R. Herbin, Finite volume methods, Handbook Numer. Anal., 7 (2000), 713-1018.
  10. [10] J. Friedrich, O. Kolb, S. Gottlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Netw. Heterog. Media., 13, No 4 (2018), 531-547.
  11. [11] P. Goatin, S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media., 11, No 1 (2016), 107-121.
  12. [12] E. Godlewski, P.A. Raviart, Hyperbolic Systems of Conservation Laws, Ellipses (1991).
  13. [13] S. Gottlieb, D. I. Ketcheson, C. W. Shu, High order strong stability preserving time discretizations, J. Sci. Comput., 38, No 3 (2009), 251-289.
  14. [14] R. M. Colombo, M. Herty, M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17, No 2 (2011), 353-379.
  15. [15] M. Gugat, A. Keimer, G. Leugering, Z. Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, Netw. Heterog. Media., 10, No 4 (2015), 749-785.
  16. [16] A. Kurganov, A. Polizzi, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics, Netw. Heterog. Media., 4, No 3 (2009), 431-451.
  17. [17] H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), 408-463.