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1. Introduction

Convex functions have played an essential part in the development of several
fields of pure and applied sciences. Convexity theory shows a wide spectrum of
very interesting developments involving a link among different fields of mathe-
matics, physics, engineering sciences and economics. For example, in 2019, Ma-
lyuta and Açikmeşe [14] presented a novel convex optimization-based system
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for finding the globally optimal solutions of a class of mixed-integer non-convex
optimal control problems which was used in rockets and other applications. Ad-
ditionally, they considered problems with non-convex constraints that restrict
the input norms to be either zero or lower- and upper-bounded. The non-convex
problem was relaxed to a convex one whose optimal solution was proved to be
optimal almost anywhere for the main problem, a procedure known as lossless
convexification.

In this paper, we suppose that I is a nonempty, connected, and bounded
subset of R. A real valued function f(x) of a single real variable x defined
on I is called convex if, for every x1, x2 ∈ I and γ ∈ [0, 1], we have the next
inequality:

f(γx1 + (1− γ)x2) ≤ γf(x1) + (1− γ)f(x2). (1)

Since the beginning of the 20th century, many generalizations of convexity have
been extensively presented and discussed in numerous ways by many authors in
the past and present. One way to generalize the notion of the convex function
is to relax the convexity condition (1) (see [13]).

As known, the definition of the classical convexity can be explained in terms
of linear functions. A significant direction for generalization of the ordinary con-
vexity replaced linear functions by another family of functions. For instance,
Beckenbach and Bing [6] generalized this status by substituting the linear func-
tions by a family of continuous functions in such a way that for each pair of
points p1(x1, f(x1)) and p2(x2, f(x2)) of the plane, there exists exactly one
member of the family with a graph joining these points (see also [5]).

To be more exact, let {F (x)} be a family of continuous functions and F (x)
be defined on a real interval I. A function f : I → R is called a sub F -function
if, for all x1, x2 ∈ I with x1 < x2, there is a unique member of {F (x)} satisfying
the following conditions:

1. F (x1) = f(x1) and F (x2) = f(x2),

2. f(x) ≤ F (x) for all x ∈ [x1, x2].

The sub F -functions possess numerous characteristics analogous to those of
ordinary convex functions (see [1], [5], [6], [8], [10], [11], [21]). For example, let
f : I → R be a sub F -function, then for every x1, x2 ∈ I, the inequality

f(x) ≥ F (x) (2)

holds outside the interval (x1, x2).



ONE CLASS OF GENERALIZED CONVEX... 569

Theorem 1. [21] A sub F -function f : I → R has finite left and right
derivatives f ′−(x), f

′
+(x) at any point x ∈ I.

Property 2. [21] Under the assumptions of Theorem 1, the function f is
continuously differentiable on I with the exception of an at-most countable set.

The current work is only concerned with generalized convexity in the sense
of Beckenbach. For particular choices of the two-parameters family {F(x)}, we
consider one class of generalized convex functions as follows

F (x) = L(x) := ln(A+Bx).

The following double inequality

f(
u+ v

2
) ≤

1

v − u

∫ v

u
f(x)dx ≤

f(u) + f(v)

2
(3)

is well-known in research references as Hadamard’s inequality or, as it is quoted
for historical reasons [16], the Hermite-Hadamard inequality, where f : I → R

is a convex function and u, v ∈ I with u < v. This inequality attracted the
interest of numerous mathematicians; for new generalization, extensions, and
many applications, see [9], [12].

2. Definitions and preliminary results

From these investigations, let us now show the main definitions and results for
the provided class of generalized convex functions in the sense of Beckenbach
as they are used later in this article.

Now, we introduce a definition of the sub L-convex function and some of
its properties.

Definition 3. The function f : I → R is said to be sub L-convex function
on I if, for every x1, x2 ∈ I with x1 < x2, the graph of f(x) for x1 ≤ x ≤ x2
lies on or under the function

L(x) = ln(A+Bx), (4)

where A and B are taken in such a way that L(x1) = f(x1), and L(x2) = f(x2).
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Equivalently, for all x ∈ [x1, x2]

f(x) ≤ L(x)

= ln

[

(x2 − x)ef(x1) + (x− x1)e
f(x2)

x2 − x1

]

. (5)

It is should be noted that:
(1) There is another formula for the function L(x) rather than that stated

in (5), for example,

L(x) = ln(ef(x1) + (x− x1)B); B =
ef(x2) − ef(x1)

x2 − x1
. (6)

(2) If f : I → R is a two-time continuously differentiable function. Then,
f is a sub L-convex function on I if and only if

f ′′(x) + f ′2(x) ≥ 0 ∀x ∈ I. (7)

Definition 4. A function f : I → R is said to be sub L-concave function
on I if, for every x1, x2 ∈ I with x1 < x2

f(x) ≥ ln

[

(x2 − x)ef(x1) + (x− x1)e
f(x2)

x2 − x1

]

, x ∈ [x1, x2]. (8)

Remark 5. A function f : I → R is said to be exponentially convex
function (see [17, 18, 19]), if

ef(γx1+(1−γ)x2) ≤ γef(x1) + (1− γ)ef(x2), (9)

for all x1, x2 ∈ I and γ ∈ [0, 1].
We use the substitution:

γ =
x2 − x

x2 − x1
. (10)

Hence, from (5), the function L(x) has the following form

L(x) = L(γx1 + (1− γ)x2) = ln[γef(x1) + (1− γ)ef(x2)]. (11)

Thus, from Definition 3, it is revealed that a function f : I → R is a sub
L-convex function on I if, for all x1, x2 ∈ I and γ ∈ [0, 1], we have the next
inequality:

f(γx1 + (1− γ)x2) ≤ L(x)
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= ln[γef(x1) + (1− γ)ef(x2)].

Then,

ef(γx1+(1−γ)x2) ≤ γef(x1) + (1− γ)ef(x2). (12)

Therefore, from (9) and (12), we deduce that the sub L-convex functions are
precisely the standard exponentially convex functions.

In fact, the topic of exponentially convex functions really originated in the
paper of Bernstein [7]. In 1929, Bernstein introduced a function f(x)(u < x <
v) belonging to the class ϕu,v if it is continuous and

n
∑

i,j=1

f(
xi + xj

2
)αiαj ≥ 0 (13)

for all n ∈ N and all choices αi ∈ R, xi in (u, v), i = 1, ..., n. Additionally, he
called these functions f(x) ∈ ϕu,v exponentially convex functions. This con-
cept was studied by some researchers (see [20] and the references therein) after
Benstein [7]. It should be noted that this concept is different from Definition 3.
In 1972, Avriel [4] introduced and studied the definition of r-convex functions.
Let r be a real number. A real function f defined on a convex set C ⊂ Rn

is said to be r-convex function if for any x1, x2 ∈ C, γ ≥ 0, δ ≥ 0, such that
γ + δ = 1 we have

f(γx1 + δx2) ≤

{

log{γerf(x1) + δerf(x2)}1/r, if r 6= 0

γf(x1) + δf(x2), if r = 0.
(14)

A function f is r-convex (r-concave) if r > 0 (r < 0). The subject of r-
convex attracted the interest of some researchers such as Antczak [3] and Zhao
et al. [23]. They studied some properties of r-convex that have important
applications in mathematical programming and optimization. This definition
is the same as Definition 3. In 2018, Alirezaei and Mathar [2] showed the
concept of exponentially concave functions in Rn and presented some of their
properties and their impact on information theory. This notion agrees with
Definition 4 in R. In 2019, Noor and Noor [17], [18], [19] proposed the concept
of exponentially convex functions as there is in the Remark 5. They showed
many of the properties of exponentially convex functions and discussed their
relations with convex functions.

Based on continued research, this worksheet just deals with generalized
convexity in the sense of Beckenbach. By choosing the family {F (x)} equal
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{L(x) = ln[A + Bx]} as shown in Definition 3. So again, the concept of sub
L-convex functions is considered. Some properties of sub L-convex functions
are proposed. These properties are different from those on the class of expo-
nentially convex functions. The existence of support curves is presented, which
implies their generalized convexity. In addition, an extremum property of these
functions is obtained, and the relation between these functions and increasing
functions is yielded. Furthermore, Hadamard’s inequality is established for sub
L-convex functions.

Now, we show the form of supporting functions in the class of sub L-convex
functions.

Definition 6. Let f : I → R be a sub L-convex function. Then, a function

ψx1
(x) = ln(A+Bx) (15)

is called a supporting function for f(x) at the point x1 ∈ I, if

ψx1
(x1) = f(x1), (16)

and
ψx1

(x) ≤ f(x), ∀x ∈ I. (17)

This is to say that if f(x) and ψx1
(x) agree at x = x1, then the graph of f(x)

lies on or above the support curve.

Proposition 7. Let f : I → R be a differentiable sub L-convex function,
then the supporting function for f(x) at the point x1 ∈ I has the form

ψx1
(x) = f(x1) + ln[1 + (x− x1)f

′(x1)]. (18)

Proof. The supporting function ψx1
(x) for f(x) at the point x1 ∈ I can be

described as follows:
ψx1

(x) = lim
x2→x1

L(x), (19)

where x2 ∈ I and
f(x) ≥ L(x), ∀x ∈ I \ (x1, x2). (20)

Then, taking the limit of both sides as x2 → x1 and from (6), one obtains

f(x) ≥ ψx1
(x)

= lim
x2→x1

L(x)
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= lim
x2→x1

[ln(ef(x1) + (x− x1)B)]

= f(x1) + ln[1 + (x− x1)f
′(x1)]. (21)

Thus, the claim follows.

3. Results

In [22], a basic theorem in the theory of convex functions refers to a necessary
and sufficient condition in order that the function f : I → R be convex, that
is there must be at least one line of support for f at each point x in I. In the
following theorem, we prove analogs of this result for sub L-functions.

Theorem 8. A function f : I → R is a sub L-convex function on I if and
only if there exist a supporting functions for f(x) at each point x in I.

Proof. The necessity is an instant result of Bonsall [8].

To show the sufficiency, assume that x is an arbitrary point in I and f has
a supporting function at this point. For suitability, we write the supporting
function in the following form:

ψx(y) = f(x) + ln

[

1 + (y − x)Sx,f

]

, (22)

where Sx,f is a fixed real number depending on x and f.

From Definition 6, we have

ψx(x) = f(x),

and

ψx(y) ≤ f(y) ∀y ∈ I. (23)

It follows that

f(x) + ln

[

1 + (y − x)Sx,f

]

≤ f(y) ∀y ∈ I. (24)

Consequently,

1 + (y − x)Sx,f ≤ ef(y)−f(x) ∀y ∈ I. (25)
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For every x1, x2 ∈ I with x1 < x2 and γ, δ ≥ 0 with γ + δ = 1, let

x = γx1 + δx2. (26)

we apply (25) twice at y = x1 and at y = x2 and this yields

1 + (x1 − x)Sx,f ≤ ef(x1)−f(x), (27)

and

1 + (x2 − x)Sx,f ≤ ef(x2)−f(x). (28)

Multiplying the first inequality by γ(x2 − x1) and the second inequality by
δ(x2 − x1) and then adding them, we get

(γ + δ)(x2 − x1) + [γ(x2 − x1)(x1 − x) + δ(x2 − x1)(x2 − x)]Sx,f

≤
γ(x2 − x1)e

f(x1) + δ(x2 − x1)e
f(x2)

ef(x)
.

Consequently,

f(x) ≤ ln

[

(x2 − x)ef(x1) + (x− x1)e
f(x2)

x2 − x1

]

∀x ∈ [x1, x2],

which is to prove that the function f(x) is a sub L-convex function on I. Then,
the theorem is true.

Remark 9. For a sub L-convex function f : I → R, the constant Sx,f in
the foregoing theorem is equal to f ′(x) if f is differentiable at the point x ∈ I.
Otherwise, f ′−(x) ≤ Sx,f ≤ f ′+(x).

Mils [15] presented an extremum property of convex functions which gave
the minimum integral to subtract the convex function from its support. In this
paper, we get an extremum property to the sub L-convex functions which are
introduce in the following theorem.

Theorem 10. If f : I → R is a sub L-convex function, with u, v ∈ I and
if ψx1

(x) is a supporting function for f(x) at the point x1 ∈ [u, v]. Then, the
function

K(x1) =

∫ v

u
[f(x)− ψx1

(x)]dx (29)

has a minimum value at x1 = (u+ v)/2.
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Proof. Using Definition 6, we get

ψx1
(x1) = f(x1), (30)

ψx1
(x) ≤ f(x) ∀x ∈ [u, v], (31)

and ψx1
(x) can be written in the following formula:

ψx1
(x) = f(x1) + ln[1 + (x− x1)Sx1,f ]; ∀x ∈ [u, v]. (32)

From (32), we get

∫ v

u
ψx1

(x)dx = f(x1)(v − u) + v ln[1 + (v − x1)Sx1,f ]

−u ln[1 + (u− x1)Sx1,f ]

−

∫ v

u

xSx1,f

1 + (x− x1)Sx1,f
dx,

= f(x1)(v − u) + v ln[1 + (
u+ v

2
− x1)Sx1,f + (

v − u

2
)Sx1,f ]

−u ln[1 + (
u+ v

2
− x1)Sx1,f − (

v − u

2
)Sx1,f ]− (v − u)

+
1− x1Sx1,f

Sx1,f
ln

[

1 + (v − x1)Sx1,f

1 + (u− x1)Sx1,f

]

,

consequently,

∫ v

u
ψx1

(x)dx =

= f(x1)(v − u) + (v − u) ln[1 + (
u+ v

2
− x1)Sx1,f ]

+v ln

[

1 +
(v−u

2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

−u ln

[

1−
(v−u

2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

− (v − u)

+
1− x1Sx1,f

Sx1,f
ln

[

1 + (u+v
2 − x1)Sx1,f + (v−u

2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f − (v−u

2 )Sx1,f

]

,

= f(x1)(v − u) + (v − u) ln[1 + (
u+ v

2
− x1)Sx1,f ]

+(
u+ v

2
+
v − u

2
) ln

[

1 +
(v−u

2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]
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−(
u+ v

2
−
v − u

2
) ln

[

1−
(v−u

2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

−(v − u) + 2
1− x1Sx1,f

Sx1,f
tanh−1

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

,

= f(x1)(v − u) + (v − u) ln[1 + (
u+ v

2
− x1)Sx1,f ]

+2
u+ v

2
tanh−1

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

+
v − u

2
ln

[

1−
[(v−u

2 )Sx1,f ]
2

[1 + (u+v
2 − x1)Sx1,f ]

2

]

−(v − u) + 2
1− x1Sx1,f

Sx1,f
tanh−1

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

.

Therefore, we obtain
∫ v

u
ψx1

(x)dx =

= f(x1)(v − u) + (v − u) ln[1 + (
u+ v

2
− x1)Sx1,f ]− (v − u)

+
v − u

2
ln

[

1−
[(v−u

2 )Sx1,f ]
2

[1 + (u+v
2 − x1)Sx1,f ]

2

]

+2
1 + (u+v

2 − x1)Sx1,f

Sx1,f
tanh−1

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

. (33)

We apply (32) at x = (u+ v)/2, to obtain

ψx1
(
u+ v

2
)− f(x1) = ln(1 + (

u+ v

2
− x1)Sx1,f ) ∀x1 ∈ [u, v]. (34)

By substituting (34) in (33), we observe that

∫ v

u
ψx1

(x)dx = (v − u)ψx1
(
u+ v

2
)− (v − u)

+
v − u

2
ln

[

1−
[(v−u

2 )Sx1,f ]
2

[1 + (u+v
2 − x1)Sx1,f ]

2

]

+2
1 + (u+v

2 − x1)Sx1,f

Sx1,f
tanh−1

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

= (v − u)

[

ψx1
(
u+ v

2
) +H

]

, (35)
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where

H =
1

2
ln

[

1−
[(v−u

2 )Sx1,f ]
2

[1 + (u+v
2 − x1)Sx1,f ]

2

]

+2
1 + (u+v

2 − x1)Sx1,f

(v − u)Sx1,f
tanh−1

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

− 1.

(36)

Consequently,

K(x1) =

∫ v

u
f(x)dx− (v − u)

[

ψx1
(
u+ v

2
) +H

]

. (37)

One might directly notice that H does not depend on x1, that is H depends
only on u and v. Using (30) at x1 =

u+v
2 , the function K(x1) becomes

K(
u+ v

2
) =

∫ v

u
f(x)dx− (v − u)

[

f(
u+ v

2
) +H

]

. (38)

But from (31), we note that

ψx1
(
u+ v

2
) ≤ f(

u+ v

2
) ∀x1 ∈ (u, v). (39)

Then, from (39), (37) and (38), we obtain

K(x1) ≥ K(
u+ v

2
) ∀x1 ∈ (u, v). (40)

Thus, the minimum value at function K(x1) occurs at x1 = (u+ v)/2.

In the next theorem, we establish Hadamard’s inequality for sub L-convex
functions.

Theorem 11. Let f : I → R be a sub L-convex function, with u, v ∈ I
with u < v.

Then, one obtains the following inequality

f(
u+ v

2
) ≤

1

v − u

∫ v

u
f(x)dx ≤

[f(v)− 1]ef(v) − [f(u)− 1]ef(u)

ef(v) − ef(u)
. (41)
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Proof. Let x1 be an arbitrary point in (u, v). As f(x) is a sub L-convex
function, then from Definitions 3 and 6 we note that the graph of f(x) lies
nowhere above the function

L(x) = ln[ef(u) + (x− u)B], where B =
ef(v) − ef(u)

v − u
, (42)

and nowhere below any supporting function

ψx1
(x) = f(x1) + ln[1 + (x− x1)Sx1,f ], (43)

at the point x1 ∈ [u, v].
Thus,

ψx1
(x) ≤ f(x) ≤ L(x) x ∈ [u, v],

and
1

v − u

∫ v

u
ψx1

(x)dx ≤
1

v − u

∫ v

u
f(x)dx ≤

1

v − u

∫ v

u
L(x)dx. (44)

From (42), we get

1

v − u

∫ v

u
L(x)dx =

1

v − u

∫ v

u
ln[ef(u) + (x− u)B]dx,

=
1

v − u

[

vf(v)− uf(u)

−

∫ v

u

xB

1 + (x− u)B
dx

]

,

=
1

v − u

[

vf(v)− uf(u)− (v − u)

+
ef(u) − uB

B
[f(v)− f(u)]

]

=
f(v)ef(v) − f(u)ef(u)

ef(v) − ef(u)
− 1,

=
[f(v)− 1]ef(v) − [f(u)− 1]ef(u)

ef(v) − ef(u)
. (45)

By using (43), (35) and (36), it follows that

1

v − u

∫ v

u
ψx1

(x)dx = ψx1
(
u+ v

2
) (46)

+2
1 + (u+v

2 − x1)Sx1,f

(v − u)Sx1,f
tanh−1

[

(v−u
2 Sx1,f )

1 + (u+v
2 − x1)Sx1,f

]

− 1
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+
1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]

. (47)

Since, tanh−1 y > y for 0 < y < 1, we have

1

v − u

∫ v

u
ψx1

(x)dx > ψx1
(
u+ v

2
)

+
1 + (u+v

2 − x1)Sx1,f

(v−u
2 )Sx1,f

×

[

(v−u
2 )Sx1,f

1 + (u+v
2 − x1)Sx1,f

]

− 1

+
1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]

> ψx1
(
u+ v

2
) +

1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]

.

We take the maximum of the term

(1/(v − u))

∫ v

u
ψx1

(x)dx ≤ (1/(v − u))

∫ v

u
f(x)dx

for x1 ∈ (u, v) and from (48), it follows that

1

v − u

∫ v

u
f(x)dx ≥ max

u<x1<v

{

1

v − u

∫ v

u
ψx1

(x)dx

}

,

> max
u<x1<v

{

ψx1
(
u+ v

2
) +

1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]}

,

= max
u<x1<v

{

ψx1
(
u+ v

2
)

}

+ max
u<x1<v

{

1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]}

.

Actually, we observe

1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]

≤ 0,

then

max
u<x1<v

{

1

2
ln

[

1−
((v−u

2 )Sx1,f )
2

(1 + (u+v
2 − x1)Sx1,f )

2

]}

= 0.

Consequently,

1

v − u

∫ v

u
f(x)dx ≥ max

u<x1<v

{

ψx1
(
u+ v

2
)

}

. (48)
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From (31) at x1 = (u+ v)/2, we have

ψx1
(
u+ v

2
) ≤ f(

u+ v

2
) ∀x1 = (u, v). (49)

Using (48) and (49), one obtains

1

v − u

∫ v

u
f(x)dx ≥ max

u<x1<v

{

ψx1
(
u+ v

2
)

}

= f(
u+ v

2
). (50)

Hence, from (44), (45) and (50), we have the required inequality (41).

Theorem 12. Let f : (u, v) → R be a twice differentiable on (u, v).
Then f is a sub L-convex function if and only if there is an increasing function
w : (u, v) → R and a point c ∈ (u, v) such that for all x ∈ (u, v),

ef(x) − ef(c) =

∫ x

c
w(t)dt. (51)

Proof. Let f be a sub L-convex function. Since f is a differentiable function
on I, then we can choose

w(x) = f ′(x)ef(x) ∀x ∈ (u, v). (52)

By differentiating the above equation with respect to x, we get

w′(x) = f ′′(x)ef(x) + f ′2(x)ef(x),

= [f ′′(x) + f ′2(x)]ef(x).

Since f is a sub L-convex function and from (7), we have

w′(x) = [f ′′(x) + f ′2(x)]ef(x) ≥ 0 ∀x ∈ (u, v). (53)

Then w is an increasing function. For any c ∈ (u, v), and by integrating (52)
from c to x, we get

∫ x

c
w(t)dt = ef(x) − ef(c).

Conversely, let w be an increasing function and the equation (51) be realized,
we observe that

f(x) = ln

[

ef(c) +

∫ x

c
w(t)dt

]

. (54)
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Then, for x1 < x2 in (u, v), we have

f(x) = ln

[

ef(c) +
(x2 − x) + (x− x1)

x2 − x1

∫ x

c
w(t)dt

]

,

= ln

[

ef(c) +
x2 − x

x2 − x1

∫ x1

c
w(t)dt+

x2 − x

x2 − x1

∫ x

x1

w(t)dt

+
x− x1
x2 − x1

∫ x2

c
w(t)dt−

x− x1
x2 − x1

∫ x2

x
w(t)dt

]

.

Since w is an increasing, then w(t) ≤ w(x) in
∫ x
x1
w(t)dt and

−w(t) ≤ −w(x) in −
∫ x2

x w(t)dt, and therefore, we obtain

f(x) ≤ ln

[

ef(c) +
(x2 − x) + (x− x1)

x2 − x1

∫ x

c
w(t)dt

]

= ln

[

ef(c) +
x2 − x

x2 − x1

∫ x1

c
w(t)dt +

x2 − x

x2 − x1
w(x)

∫ x

x1

dt

+
x− x1
x2 − x1

∫ x2

c
w(t)dt−

x− x1
x2 − x1

w(x)

∫ x2

x
dt

]

= ln

[

(x2 − x) + (x− x1)

x2 − x1
ef(c) +

x2 − x

x2 − x1

∫ x1

c
w(t)dt

+
x2 − x

x2 − x1
w(x)(x − x1) +

x− x1
x2 − x1

∫ x2

c
w(t)dt

−
x− x1
x2 − x1

w(x)(x2 − x)

]

= ln

[

(x2 − x)(ef(c) +
∫ x1

c w(t)dt) + (x− x1)(e
f(c) +

∫ x2

c w(t)dt)

x2 − x1

]

.

(55)

Applying (54) at x1 and x2, we get

f(x1) = ln

[

ef(c) +

∫ x1

c
w(t)dt

]

,

and

f(x2) = ln

[

ef(c) +

∫ x2

c
w(t)dt

]

.

Consequently,

ef(x1) = ef(c) +

∫ x1

c
w(t)dt, (56)
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and

ef(x2) = ef(c) +

∫ x2

c
w(t)dt. (57)

Substituting (56) and (57) in (55), we have

f(x) ≤ ln

[

(x2 − x)ef(x1) + (x− x1)e
f(x2)

x2 − x1

]

∀x ∈ [x1, x2].

Which means that the function f(x) is a sub L-convex function on (u, v).

Hence, the theorem follows.
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[14] D. Malyuta, B. Açikmeşe, Lossless convexification of optimal control
problems with semi-continuous inputs, arXiv e-print, 19 Nov (2019);
https://doi.org/10.48550/arXiv.1911.09013.

[15] M. J. Miles, An extremum property of convex functions, Amer. Math.

Monthly, 76 (1969), 921–922.
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