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Abstract: In this paper we consider four models for binary regression anal-
ysis and their application to the prediction of lethal outcome in pediatric liver
transplantation. We also compare the performance of the MATLAB® codes
fitnlm and 1sqcurvefit [4] used for this purpose.
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1. Introduction

In the recent two years, various mathematical models have been employed in the
studies on the spread of Covid-19, just to mention a few works as for example,
[1], [3], [7], [10]. Among these, a number of sigmoid models have been considered
in [2] for modeling of the consecutive waves of the Covid-19 pandemic.

Some of these models are appropriate for the modeling of the outcome in
the early postoperative period of pediatric liver transplantation. In particu-
lar the fractional power model seems suitable for this purpose. The numerical
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determination of the parameters of the models leads to a highly nonlinear com-
putational problem. The solution of this problem depends on the algorithm
implemented as well as on the initial guess. For illustration of these phenom-
ena we compare the performance of two MATLAB® codes [4] on particular
sets of data.

2. Binary regression
2.1. Statement of the problem

Let the data X = [x1,22,...,2n], Y = [y1,¥Y2,...,yn]| be given. Usually the
elements of the vector X are ordered so as

zy <x9 <--- <z, yr € {0,1}.

The inequalities xy < xp4+1 (instead of the usual z; < xp41) reflect the fact that
there may be repeated arguments. The variable y is binary and takes values
yr = 0 (absence of the corresponding property), or yr = 1 (presence of the
corresponding property).

The binary nonlinear regression model is a function

y = R(c,x), = € [z1,2N], (1)

where ¢ = [c1,¢2,...,¢n] (n < N) is n-vector parameter which has to be deter-
mined using the data (X,Y). In the simplest case this is done by minimizing
the quadratic cost

N
Q(c) = [|R(e,X) = Y|I* = Y (R(c,zx) — yp)*, (2)
k=1
where R(c,X) = [R(c,z1), R(c,z2),...,R(c,znN)]. Denote by
_ /Q(c)
RMSE = N

the root mean square error (RMSE).
2.2. Logistic model

The widely used standard logistic model R = L is

1
1+ exp(axr +0b)’

L(a,b,z) =
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where ¢ = [a, b] is the parameter vector.
Note that the application of the generalized logistic model

1
(1 + exp(ax 4+ b))"

for binary regression meets serious problems. Since

Lg(a,b,1,2) = L(a,b,x),

Lg(a> bv n, J}) =

the standard model is a particular case of the generalized problem. Hence one
should expect that the value of the quadratic cost Q(c) for the generalized model
Lg should be less than or equal to the corresponding value for the standard
model L.

However, the function ¢ — @(c) has rather complicated behavior and the
numerical procedure may find local minimums for the generalized model with
larger values of RMSE compared to the values of RMSE for the standard model.

2.3. Fractional power model

The generalized fractional power model, or the generalized Hill model, has the

form
l,an

where ¢, = [a,b,n] is the vector parameter. When n =1 we have the standard
fractional power model

Fy(a,b,n,x) =

F(a,b,x) = b (4)

with vector parameter ¢ = [a, b].
2.4. Inverse tangent model

The inverse tangent model had been considered in [8] for the binary regression
analysis of early postoperative period in liver children transplantation. The
generalized form of this model is

1 \"
Ty(a,b,n,x) = (—atan(aa: +0b) + §> ;
™

where ¢, = [a,b,n] is the vector parameter. When n =1 we have the standard
tnverse tangent model

1 1
T(a,b,x) = —atan(ax +b) + 3 (5)
™
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with vector parameter ¢ = [a, b].
2.5. Gompertz model

The Gompertz model
G(a,b, ) = exp(—exp(ax + b))

is the limit case of the generalized logistic model written in a special form. The
vector parameter for the Gompertz model is ¢ = [a, ].

Note that the generalized form G(a,b, )" (n > 0) of the Gompertz model
is again a Gompertz model since

G(a,b,2)" = G(a, B,7), B = b+ log(n).
The connection between the generalized models R, and standard models R
is

Ry(a,b,n,x) = R(a,b,x)",
R(a,b,x) = Rg(a,b,1,x).

3. MATLAB® codes for binary regression

The parameters of the models are computed by the MATLAB® command
fitnlm in the form

>> ¢ = fitnlm(X,Y,R,c0)

Here R = @(c,x) is the description of the model (1) and cq is the initial guess
for the value of the vector parameter c. For example, in case (3) we have

>> R = @(c,x) 1./(1 + exp(c()*x + c(2))
Another MATLAB® function
>> ¢ = lsqcurvefit(R,c0,X,Y)

can also be used to compute the vector parameter c.

The accuracy of the models is estimated by the value RMSE of the quadratic
mean square error as well as by the p—value.

Let for example n = 12 and let the data be given at Table 1 below.
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X|01/03]07]|11(16]19|23|42]|50)|84]10.0|13.1
Y| O 0 0 1 0 1 1 1 1 1 0 1

Table 1: Data

H Model H c(1) ‘ c(2) ‘ RMSE ‘ p-—value H
F 2.24 1.36 0.433 | 0.00138
G —1.53 1.50 0.435 | 0.00145
L —2.09 2.77 0.438 | 0.00154
T 8.86 —8.07 0.442 | 0.00169

Table 2: Comparison of models

The coefficients of the models, the values of RMSE and the p—values are
presented at Table 2. The results are given with up to three significant decimal
digits which corresponds to the accuracy of the data.

The order of models according to both the criterion RMSE and the p—value
is1) F, 2) G, 3) L and 4) T. We see that the model F' is superior to the other
three models.

With the fractional model we have

$2'24

Y= 2 136

4. Prediction of mortality

In this section we compare the performance of the four models described in
Sections 2.2-2.5 to the prediction of mortality in early postoperative periods
after pediatric liver transplantation (LT). The use of the logistic model for this
purpose has been considered in [9, 8, 6].

The Model for Early Allograft Function (MEAF) is the first statistically
confirmed score for diagnosis of Early Allograft Dysfunction (EAD). It is a scale
from 0 to 10 which is advantageous as it makes it possible to grade the severity
of the dysfunction [5]. Scoring is based on graft survival at different intervals
and is made by a calculation containing ALAT (alanine aminotransferase), INR
(International Normalized Ratio) and total bilirubin in the blood at the 3rd
postoperative day.
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Multiple researches in transplant centers over the world proved that MEAF
has an advantage over other definitions of EAD and use it over the other ones.
The mean scores in patients are reported as 5.02, with more severe EAD at
scores above 6. The first data set (X1,Y) considered below contains the MEAF
results for 26 children with LT in “Lozenets” Hospital.

The Model for End-Stage Liver Disease score in the post transplant period
(pPMELD) was used as a predictor of mortality in the early postoperative period.
pPMELD can help in assessing the need for re-transplantation. Uzunova et
al. [6] published results of a retrospective study of liver transplant children
using pMELD as a predictor of lethal outcome after liver transplantation. An
univariate analysis was used and the constructed binary models using pMELD
on postoperative day 5 (data (X2,Y)) predicted disadvantageous outcome after
LT with good statistical significance (p < 0.05).

The data X1, X5, Y are presented at Tables 3-5.

Xy || 323 826|744 (933 | 774699693 |6.20 | 7.17
X 7 12 18 20 24 20 14 13 16
Y 1 1 0 0 1 1 1 1 1

Table 3: Data for MEAF and pMELD

The coefficients of the models as well as the RMSE and p-values are given
at Table 6.

As in the previous case the fractional power model F' is superior to the
other three models relative to both the RMSE and the p—value. The other
three models show approximately equal behavior. The computed parameters
of the models are given at Table 6. The comparison of the performance of the
models is summarized at Table 7.

With the data set X; the fractional power model is

1.0.422

P IV

Xy || 5.68 | 6.97 | 850 | 4.92 | 547 | 6.83 | 8.01 | 2.79 | 5.56
Xo || 21 32 23 18 12 20 31 16 25
Y 0 0 1 1 1 1 0 0 1

Table 4: Data for MEAF and pMELD (cont.)



COMPARISON OF BINARY REGRESSION MODELS... 607

Xy || 5.96 | 5.35 | 7.20 | 5.10 | 9.65 | 3.66 | 7.51 | 7.22
Xo || 22 19 19 16 31 22 22 23
Y 1 0 0 0 1 1 1 1

Table 5: Data for MEAF and pMELD (cont.)

Data || Mod. c(1) c(2) RMSE | p-value
X, L —543x 1072 | —2.83 x 10t | 0495 | 2.9x107°
X, L 6.00 x 1072 —1.84 0.487 | 2.0 x 107
X, F 4.22 x 1071 1.14 0.494 | 2.8 x10°°
X, F —1.19 1.57 <1072 | 0.486 | 1.9 x 1076
X, T 5.33 x 1072 1.81 x 1071 | 0.495 | 2.9 x 1076
X, T —5.15 x 1072 1.59 0.488 | 2.0 x 1076
X, G —4.57 %1072 | —=5.60 x 107t | 0.495 | 2.9 x 107°
X, G 4.94 x 1072 —1.86 0.487 | 2.0 x 1076

Table 6: Performance of models

H Data H RMSE ‘ p—value H
Xy | F,L=T=G | F, L
X F,L=G,T | F, L

T=G
T=G

Y

Table 7: Comparison of models

while for the data Xs the fractional power model is

:13_1'19 1
2119 1 0.00157 1+ 0.00157 219"

’y:

5. Conclusions

1. The results obtained by the MATLAB® codes fitnlm and 1sqcurvefit
coincide up to three significant decimal digits. Both codes are sensitive
relative to the initial guess cg for the vector parameter c. The codes may
stop at a local minimum which is different from the optimum value of c.
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. The logistic model and the inverse tangent model are symmetric in the

sense that they are odd functions relative to the point with coordinates
x = —b/a, y = 0.5, while the fractional power model and the Gompertz
model are non-symmetric.

. Hence, in view of 2, for non-symmetric data (which is usually the case in

the analysis of mortality in the early post-operative period) the perfor-
mance of the fractional power model and the Gompertz model are superior
to the logistic model and the inverse tangent model.

. The p-—value in all cases considered in this paper is of order 1076 and the

root mean square error is less than 0.5. The latter is typical for binary
regression models.

. It is useful to draw the graphs of the functions z — R(c,x), x € [z1,zN],

in order to detect possible local minimums for ¢ different from the optimal
one.
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