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1. Introduction

Hamburger proved in [1] that any infinite sequence of real numbers s = (sj)j ≥
0, can be represented as follows

sj =

∫

R

xjdµ(x), j ≥ 0, (1)

with a positive measure µ on the real line, if and only if all Hankel matrices
Hn = (si+j)0≤i,j≤n, (n ≥ 0), are positive semidefinite.
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The sequences defined in (1) are called Hamburger moment sequences.
If (sj)j≥0 is a Hamburger moment sequence, then Hankel determinants

Dn =| Hn | are nonnegative and only two possibilities can occur, either Dn > 0
for all n ∈ N, and in this case any µ satisfying (1) has infinite support, or there
exists r such that Dn > 0 for n ≤ r and Dn = 0 elsewhere.

In this latter case, µ is uniquely determined and it is a discrete measure
concentrated in r + 1 points on the real axis, [10].

It follows, from a general theorem about the leading principal minors of
real symmetric matrices, that if Dn > 0 for n ≤ n0 then the Hankel matrix
Hn0

is positive definite [3, p.70]. On the other hand, if Dn ≥ 0 for n ≤ n0, we
can not conclude that Hn0

is positive semidefinite. On this point, we recall the
following interesting theorem due to C. Berg and R. Szwarc [4].

Theorem 1. Let s = (sj)j≥0 be a real sequence. If the sequence of
Hankel determinants satisfies Dn > 0 for n ≤ n0 and Dn = 0 for n > n0, then
(sj)j≥0 is a Hamburger moment sequence of a uniquely determinant measure µ
concentrated in n0 + 1 points.

In the present work, we are interested in the Hamburger moment problem
for finite sequences, that is the Hamburger truncated moment problem. We
deal with a determinant characterization for the Hamburger truncated moment
sequences.

Let s = (sj)0≤j≤m, m ≥ 0 be a real finite sequence and consider the follow-
ing Hamburger truncated moment problem

sj =

∫

R

xjdµ(x), 0 ≤ j ≤ m. (2)

Thereafter, we use the term even case if m is even, and odd case otherwise.
Note that the theory of complete moment problem does not provide a solu-

tion for the truncated one. In contrary, the solution of the truncated moment
problem can be used to solve the complete one, [2, 7, 9].

IfHE(m
2
)(s) is invertible, its positivity is necessary and sufficient to solve the

problem (2). However, such condition is, in general, not sufficient if HE(m
2
)(s)

is singular, and the determinant characterization of moment sequences with
finely many mass-points given in [4] is no longer valid when dealing with finite
sequences. In Example 9, we illustrate this fact.

The usual approach to solve the problem (2) consists in treating the even
non-singular case and then reducing the even singular case to the non-singular
one by the use of quasi-orthogonal polynomials and gaussian quadrature [6].
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Another approach, revolves around the notion of recursivity [5] of Hankel
matrices.

In this paper, we aim essentially to solve (2) without distinction between the
even and the odd case. We establish some necessary and sufficient conditions
based on the calculation of the leading principal minors of the matrix Hk(s)
where k = E(m2 ).

If all leading principal minors are positive, then s is positive definite if
m = 2k or it can be extended to a positive definite sequence if m = 2k + 1. In
both cases s is a Hamburger moment sequence. Otherwise, we focus on the first
determinant which vanishes. So, let us assume that D0 > 0,D1 > 0, · · · ,Dr > 0
and Dr+1 = 0 where r < E(m2 ), then we construct a representative measure
µ for the subsequence (s0, s1, · · · , s2r+1) and we show that s is a Hamburger
moment sequence if and only if it can be represented by µ.

In practice, this approach has limits since the construction of the measure µ
is based on the resolution of an equation of degree r+1 and the resolution of such
equation is not always easy. This is why we have investigated a link between
the Jacobi operators and the truncated moments sequences. This enable us to
establish an algorithm allowing to conclude if the problem (2) is soluble or not
by reducing the problem to a calculations of the matrix product of a row matrix
of size r and a square matrix of size r × r.

The remainder of this paper is organized as follows. In Section 2, we present
some preliminaries that will be used to establish our results. Section 3 is devoted
to the statement of our findings.

2. Preliminaries

In this section, we present a resolution for the problem 2 when n = 2r + 1
and (sj)0≤j≤2r is positive definite. Then, we provide a link between Jacobi
operators and Hamburger moment problem.

2.1. Resolution of the problem (2) when

s = (s0, s1, · · · , s2r+1) with (s0, s1, · · · , s2r) positive definite

Let s = (sj)0≤j≤2r+1 be a real finite sequence such that the sequence (sj)0≤j≤2r

is positive definite, s can be extended to a 2r + 2 positive definite sequence s∗

see [8, Lemma 9.1]. We can then define on Rr+1[x] an inner product by

< P,Q >= L∗
s(PQ),
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where L∗
s is the Riesz functional associated to s∗, i.e L∗

s(x
j) = sj, 0 ≤ j ≤ 2r+2.

Let (P0, P1, · · · , Pr+1) be the family of unitary orthogonal polynomials as-
sociated to this inner product. It is defined by

Pn =
1

Dn−1

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sn
. . . . . . . . .
sn−1 · · · s2n−1

1 · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

,

for all n ∈ {0, · · · , r+1}, with D−1 = 1, (note that this family does not depend
on s2r+2, unless we want to normalize it).

If λ1, λ2, · · · , λr+1 denote the roots of Pr+1 then using Lemma 9.4 and
Lemma 9.6 [8], we obtain the following theorem.

Theorem 2. For all f ∈ R2r+1[x], we have

L∗
s(f) =

∫

R

f(x)dµPr+1
(x),

where µPr+1
=

r+1
∑

i=1
miδλi

, mi =

(

r
∑

k=0

(Pk(λi))
2

)−1

and δλi
denotes the Dirac

measure at the point λi.
In particular, ∀j ∈ {1, · · · , 2r + 1}, sj =

∫

R
xjdµPr+1

(x).

The following example illustrates this theorem.

Example 3. Let s be the sequence (1, 1, 2, 6, 24, 104). The subsequence
(1, 1, 2, 6, 24) is positive definite.

D0 = 1, D1 = 1, D2 = 4.

The orthogonal polynomials are

P0 = 1, P1 = x− 1, P2 = x2 − 4x+ 2 and P3 = x3 − 5x2 + 2x+ 2.

The roots of P3 are

λ1 = 1, λ2 = 2−
√
6 and λ3 = 2 +

√
6.

The coefficients mi are

m1 =
4

5
, m2 =

6 +
√
6

60
and m3 =

6−
√
6

60
.
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So, the measure µP3
is given by

µP3
=

3
∑

i=1

miδλi
.

One can easily check that sj =
∫

R
xjdµP3

(x) for 0 ≤ j ≤ 5.

In what follows, we will refer to the polynomial Pr+1 and to the measure
µPr+1

whenever we have a sequence (s0, s1, · · · , s2r+1) such that the sequence
(s0, s1, · · · , s2r) is positive definite.

2.2. Moment sequences and Jacobi operator

Let s = (sj)
∞
j=0 be an infinite sequence of real numbers. Assume that s is

positive definite.
The formula

< P,Q >s= Ls(PQ), P,Q ∈ R[x],

defines an inner product on the vector space R[x].
Applying the Gram-Schmidt procedure to the basis {1, x, x2, · · · }, we obtain

an orthonormal basis (pn)n∈N given by

p0 =
1√
s0

and pn =
1√

Dn−1Dn

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sn
...

...
...

sn−1 · · · s2n−1

1 · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where D−1 = 1, and Dn = |Hn(s)|, n ≥ 0.
The family (pn)n∈N is characterized by the following iterative relation

{

p−1 = 0

xpn = anpn+1 + bnpn + an−1pn−1, n ≥ 0,
(3)

with a−1 = 1, an =

√
Dn−1Dn+1

Dn
, and bn = Ls(xp

2
n), n ≥ 0.

The relation (3) links the moment problem to Jacobi operators.
Let Hs denotethe Hilbert space completion of the unitary space

(R[x];<,>s), and X the multiplication operator by the variable x with do-
main R[x] on Hs. Namely, Xp(x) = xp(x), p(x) ∈ R[x]. Then, X is a densely
defined symmetric operator with domain R[x] on the Hilbert space Hs, since

< Xp, q >s= Ls(xpq) = Ls(pxq) =< p,Xq >s, p, q ∈ R[x].
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Let {en, n ∈ N} be the standard orthonormal basis of the Hilbert space
l2(N) given by en = (δk,n)k∈N.

Since, {pn, n ∈ N} is an orthonormal basis of Hs, there is an unitary iso-
morphism U from Hs to l2(N) defined by Upn = en.

Then, by (3) T = UXU−1 is a symmetric operator on l2(N), which acts by

Ten = anen+1 + bnen + an−1en−1,

where e−1 = 0.

The domain D(T ) = U(R[x]) is the linear span of vector en, that is D(T )
is the vector space d of finite real sequences (β0, · · · , βn, 0, 0 · · · ). For any finite
sequence β = (βn) ∈ d, we obtain

T

(

∑

n∈N

βnen

)

=
∑

n∈N

(anβn+1 + βnbn + an−1βn−1)en.

Or equivalently

{

(Tβ)0 = a0β1 + b0β0

(Tβ)n = anβn+1 + bnβn + an−1βn−1,
(4)

where we take β−1 = 0.

Relations (4) mean that the operator T acts on a sequence β by multipli-
cation with the following infinite matrix

J =















b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
· · · · · · . . .

. . .
. . .

. . .















.

J is called Jacobi matrix, and the corresponding operator T = TJ is called
a Jacobi operator.

The terms sn can also be computed from Jacobi operator T by

sn(s0)
−1 = (s0)

−1 < xn1, 1 >s=< Xnp0, p0 >s=< T ne0, e0 >s .

So, if s0 = 1 the term sk is the entry in the left upper corner of the matrix Jk.
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Remark 4. Assume that s = (sj)j≥0 is a definite positive sequence, to
recover the terms of the sequence (s0, · · · , s2n+1) it is sufficient to calculate Jk

n ,
0 ≤ k ≤ 2n+ 1 where

Jn =





















b0 a0 0 0 0 0
a0 b1 a1 0 0 0
0 a1 b2 a2 0 0

· · · · · · . . .
. . .

. . . · · ·
· · · · · · · · · . . .

. . . an−1

· · · · · · · · · · · · an−1 bn





















.

Jn will be called the Jacobi matrix associated to s = (si)0≤i≤2n+1. The entry
in the left upper corner of Jk

n will be denoted cn,k.

Note that if Lk
1 denotes the first row of Jn then Lk

1 = Lk−1
1 × Jn, 1 ≤ k ≤

2n+ 1, with L0
1 the first row of In( the unit matrix) and we have

cn,k = Lk−1
1 × Jn ×





1
0
0



 . (5)

In the remainder of the paper, we will refer to the matrix Jn whenever
s∗ = (s0, s1, · · · , s2n) is positive definite.

In the following example we illustrate this remark.

Example 5. Let (sn)n∈N be the infinite sequence defined by sn = n!. To
recover the terms of the sequence (1, 1, 2, 6, 24, 120), it suffices to calculate the
power of the matrix

J2 =





b0 a0 0
a0 b1 a1
0 a1 b2



 ,

with a−1 = 1, an =

√
Dn−1Dn+1

Dn
, 0 ≤ n ≤ 1, and bn = Ls(xp

2
n), 0 ≤ n ≤ 2.

We have

D−1 = 1, D0 = 1, D1 = 1, D2 = 4 and D3 = 144,

P0 = 1, P1 = x− 1, P2 =
1

2
x2 − 2x+ 1 and P3 =

1

6
x3 − 3

2
x2 + 3x− 1,

a0 = 1, a1 = 2, b0 = 1, b1 = 3, and b2 = 5,
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and

J2 =





1 1 0
1 3 2
0 2 5



 .

Using (5) and by simple calculation, we get

c2,1 = 1 = s1, c2,2 = 2 = s2,

c2,3 = 6 = s3, c2,4 = 24 = s4 and c2,5 = 120 = s5.

3. Main results

Let s = (sj)
m
j=0 be a real finite sequence, to solve the problem (2), we start

by calculating the determinants of the leading principal minors of the Hankel
matrix HE(m

2
)(s).

Let r be the smallest integer such that Dk > 0 for k ≤ r and Dr+1 = 0,
then we prove that s is a Hamburger moment sequence, if and only if s is a
Hamburger moment sequence for the measure µPr+1

(see Theorem 2). To state
this result, we need the following two lemmas

Lemma 6. Let (sj)
j=2r+1
j=0 be a (2r + 1)-real sequence such that the se-

quence (sj)
j=2r
j=0 is positive definite. The following two assertions are equivalent:

(i) Pr+1 = xr+1 − a0 − a1x− · · · − arx
r;

(ii) vr+1 =
i=r
∑

i=0
aivi;

where v0, v1, · · · , and vr denote the columns ofHr(s), and vr+1 = (sr+1, sr+2, · · · ,
s2r+1)

t.

Proof. Let j ∈ {0, 1, · · · , r}. By orthogonality, we have

Ls(Pr+1x
j) = 0.

Hence,

∀j ∈ {0, 1, · · · , r}, sr+j+1 − a0sj − a1sj+1 − · · · − arsj+r = 0.
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Thus, vr+1 =
i=r
∑

i=0
aivi.

Conversely, let λ be a root of the polynomial Pr+1, we have

Pr+1(λ) =
1

Dr

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sr sr+1
...

...
...

...
sr · · · s2r s2r+1

1 · · · λr λr+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Expanding according to the last row, we obtain

Pr+1(λ) =
1

Dr

[

λr+1Dr +
r
∑

k=0

(−1)k+1λr−kDr,k

]

,

with

Dr,k =

∣

∣

∣

∣

∣

∣

∣

s0 · · · sr−k−1 sr−k+1 · · · sr+1
...

...
...

...
...

...
sr · · · s2r−k−1 s2r−k+1 · · · s2r+1

∣

∣

∣

∣

∣

∣

∣

, 0 ≤ k ≤ r − 1,

and

Dr,r =

∣

∣

∣

∣

∣

∣

∣

s1 · · · sr+1
...

...
...

sr+1 · · · s2r+1

∣

∣

∣

∣

∣

∣

∣

.

On the other hand,

vr+1 =

i=r
∑

i=0

aivi ⇒ vr+1 −
i=r
∑

i=0,i 6=j

aivi = ajvj.

Thus, replacing the last column vr+1 by vr+1 −
i=r
∑

i=0,i 6=r−k

aivi, we obtain for

0 ≤ k ≤ r − 1,

Dr,k =

∣

∣

∣

∣

∣

∣

∣

s0 · · · sr−k−1 sr−k+1 · · · ar−ksr−k

...
...

...
...

...
...

sr · · · s2r−k−1 s2r−k+1 · · · ar−ks2r−k

∣

∣

∣

∣

∣

∣

∣

= (−1)kDrar−k,

and

Dr,r =

∣

∣

∣

∣

∣

∣

∣

s1 · · · sr a0s0
...

...
...

...
sr+1 · · · s2r a0sr

∣

∣

∣

∣

∣

∣

∣

= (−1)rDra0.
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Hence,

Pr+1(λ) = 0 ⇔ 1

Dr

[

λr+1Dr +

r
∑

k=0

(−1)k+1λr−k(−1)kar−kDr

]

= 0

⇔ λr+1 +
r
∑

k=0

(−1)2k+1λr−kar−k = 0

⇔ λr+1 =
r
∑

k=0

λr−kar−k

⇔ λr+1 =
r
∑

i=0

λiai.

We deduce that λ is a root of Pr+1 if and only if λ is a root of the polynomial

Q = xr+1 −
i=r
∑

i=0
aix

i.

The polynomials Q and Pr+1 have the same degree, the same roots and are
both unitary. Therefore Pr+1 = Q and the proof is ended.

Lemma 7. Let n ≥ 1 and s = (sj)
2n
j=0 be a finite real sequence such that

Dk > 0 for all k ∈ {0, · · · , n− 1} and Dn = 0.

Then, s is a Hamburger moment sequence.

Proof. Using Theorem 2 and since the sequence (sj)
2n−2
0 is positive definite,

then the sequence (sj)
2n−1
0 is a Hamburger moment sequence for the measure

µpn , where

Pn =
1

Dn−1

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sn
. . . . . . . . .
sn−1 · · · s2n−1

1 · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

.

It suffices therefore to show that, s2n =
∫

R
x2ndµPn

(x).

Let us put Pn = xn−
n−1
∑

k=0

akx
k. By Lemma 7, we have vn =

n−1
∑

k=0

akvk, where

v0, v1, · · · , vn−1 denote the columns of Hn−1(s) and vn = (sn, sn+1, · · · , s2n)t,
i.e., sn+j =

n−1
∑

k=0

aksj+k, j ∈ {0, · · · , n− 1}.
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We have

Dn = 0 ⇔

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sn−1 sn
. . . · · · . . . . . .
sn−1 · · · s2n−2 s2n−1

sn · · · s2n−1 s2n

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

By replacing the last column vn by vn −
n−1
∑

i=0
aivi, we obtain

Dn = 0 ⇔

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sn−1 0
. . . · · · . . . . . .
sn−1 · · · s2n−2 0

sn · · · s2n−1 s2n −
n−1
∑

i=0
aisn+i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Then

Dn = 0 ⇔
(

s2n −
n−1
∑

i=0

aisn+i

)

Dn−1 = 0

⇔ s2n =
n−1
∑

i=0

aisn+i.

On the other hand, we have

∫

R

x2ndµPn
(x) =

n
∑

i=1

miλ
2n
i

=

n
∑

i=1

miλ
n
i

n−1
∑

j=0

ajλ
j
i

=

n
∑

i=1

n−1
∑

j=0

ajλ
j+n
i mi

=
n−1
∑

j=0

aj

n
∑

i=1

miλ
j+n
i

=
n−1
∑

j=0

aj

∫

R

xn+jdµPn
(x)

=

n−1
∑

j=0

ajsn+j
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= s2n.

With this, the proof is completed.

Now, we are in a position to state our first main result.

Theorem 8. Let s = (sj)
m
j=0,m ≥ 1, be a finite sequence such that

∃r ∈ N, ∀α ≤ r, Dα > 0 and Dr+1 = 0.

Then, s is a Hamburger moment sequence if and only if the following formulas
hold

sj =

∫

R

xjdµPr+1
(x), 0 ≤ j ≤ m.

Proof. The condition is obviously sufficient. Let us show that it is necessary.
Assume that s is a Hamburger moment sequence for a measure µ̃.
The sequence (sj)

2r
j=0 is positive definite. So, the sequence (sj)

2r+1
j=0 is a

Hamburger moment sequence for the measure µPr+1
, i.e ∀j ∈ {0, · · · , 2r + 1},

sj =

∫

R

xjdµPr+1
(x).

It remains to show that

∀k ∈ {2r + 2, · · · ,m}; sk =

∫

R

xkdµPr+1
(x).

For k = 2r + 2, applying Lemma 7, we get the result.
For k ∈ {2r + 2, · · · ,m}, let us assume that

∀l ∈ {0, · · · , k}; sl =

∫

R

xldµPr+1
(x).

We have,

∫

R

xk+1dµPr+1
(x) =

∫

R

xr+1xk−rdµPr+1
(x)

=

∫

R

(
r
∑

i=0

aix
i)xk−rdµPr+1

(x)

=

∫

R

r
∑

i=0

aix
i+k−rdµPr+1

(x)
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=

r
∑

i=0

ai

∫

R

xi+k−rdµPr+1
(x)

=
r
∑

i=0

aisi+k−r

=
r
∑

i=0

ai

∫

R

xi+k−rdµ̃(x)

=

∫

R

r
∑

i=0

aix
i+k−rdµ̃(x)

=

∫

R

(

r
∑

i=0

aix
i)xk−rdµ̃(x)

=

∫

R

xr+1xk−rdµ̃(x)

=

∫

R

xk+1dµ̃(x)

So,
∫

R
xk+1dµPr+1

(x) = sk+1, which concludes the proof.

To make more understandable Theorem 8, we present the following example.

Example 9. Consider the sequence

s = (sj)0≤j≤6 = (1, 2, 5, 12, 29, 70, 160).

We have
D0 = 1 > 0, D1 = 1 > 0, D2 = 0.

So, r = 1.
The orthogonal polynomials are

P0 = 1, P1 = x− 2 and P2 = x2 − 2x− 1.

The roots of P2 are

λ1 = 1−
√
2 and λ2 = 1 +

√
2.

The measure is given bay

µP2
= m1δλ1

+m2δλ2
,
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where

m1 =

(

2
∑

k=0

[Pk(λ1)]
2

)−1

=
2−

√
2

4

and

m2 =

(

2
∑

k=0

[Pk(λ2)]
2

)−1

=
2 +

√
2

4
.

A simple calculation shows that

sj =

∫

R

xjdµP2
(x) for all 0 ≤ j ≤ 5.

But
∫

R
x6dµP2

(x) = 169 6= s6 = 160.
So, s is not a Hamburger moment sequence.

Note that for the previous sequence, we have: D0 > 0,D1 > 0, and D2 =
D3 = 0, but s is not a Hamburger moment sequence. So, the determinant
characterization of moment sequence with finely many mass-point, given in [4],
is no longer valid when dealing with truncated sequences.

Now, we focus on establishing an algorithm to conclude about the solvability
of (2).

Let s = (sj)
m
j=0 be a finite sequence, where m ≥ 3. Without loss of gener-

ality, we take s0 = 1.
Assume that

∃r ∈ N, ∀l ≤ r, Dl > 0 and Dr+1 = 0.

Then, (s0, · · · , s2r) is positive definite.
Let Jr be the Jacobi matrix associated with (s0, · · · , s2r+1), and cr,j the left

upper corner of Jk
r

The definition of the algorithm is based on the following theorem.

Theorem 10. The following statements are equivalent:

(i) s is a Hamburger moment sequence;

(ii) ∀j ∈ {1, · · · ,m}, sj = cr,j.

Proof. i) ⇒ ii) By Theorem 8, s is a Hamburger moment sequence for the
atomic measure µPr+1

, we then have

∀j ∈ {1, · · · , r + 1}, sj = cr,j, (see Remark 4).
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Assume that Pr+1 = xr+1−a0−a1x−· · ·−arx
r so by Lemma 6, (a0, a1, · · · , ar)

is a solution of the system























x0 + x1s1 + x2s2 + · · ·+ xrsr = sr+1

x0s1 + x1s2 + x2s3 + · · ·+ xrsr+1 = sr+2

· · · · · · · · · · · · · · · · · ·
x0sr + x1sr+1 + x2sr+2 + · · ·+ xrs2r = s2r+1

,

which is a unique solution, because the determinant of this system is Dr > 0.

If we suppose that

Jr+1
r = b0Ir + b1Jr + · · ·+ brJ

r
r ,

then (b0, b1, · · · , br), is a solution for the same system.

Thus, bk = ak for all k ∈ {0, · · · , r}.
Hence, Jr+1

r = a0Ir + a1Jr + · · ·+ arJ
r
r and we e deduce that

J2r+2
r = a0J

r+1
r + a1J

r+2
r + · · · + arJ

2r+1
r .

So,

cr,2r+2 = a0cr,r+1 + a1cr,r+2 + · · ·+ arcr,2r+1

= a0sr+1 + a1sr+2 + · · ·+ ars2r+1

= s2r+2,

and by induction we conclude that cr,k = sk for all 2r + 2 ≤ k ≤ m.

ii) ⇒ i) The sequence (sj)
2r+1
0 , is a Hamburger moment sequence for the

measure µPr+1
, and we have Jr+1

r = a0Ir + a1Jr + · · · + arJ
r
r .

So,

s2r+2 = cr,2r+2

= a0cr,r+1 + a1cr,r+2 + · · ·+ arcr,2r+1

= a0sr+1 + a1sr+2 + · · · + ars2r+1

= a0

∫

R

xr+1dµPr+1
(x) + · · ·+ ar

∫

R

x2r+1dµPr+1
(x)

=

∫

R

xr+1(a0 + a1x+ · · ·+ arx
r)dµPr+1

(x)

=

∫

R

xr+1xr+1dµPr+1
(x)
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=

∫

R

x2r+2dµPr+1
(x).

And by induction, we proof that for all j ∈ {2r+2, · · · ,m}, sj =
∫

R
xjdµPr+1

(x).

The previous theorem provides a simple and practical algorithm which al-
lows to deduce whether a finite sequence is a Hamburger moment sequence or
not.

Given a real sequence s = (s0, s1, · · · , sm), we calculate successively the
principal minors, D0,D1, · · · . There are three possibilities:

1) All the determinants D0, · · · ,DE(m
2
) are positive, in this case, s is a Ham-

burger moment sequence because it can be extended to an infinite positive
definite sequence.

2) If one of the determinants is negative then s is not a Hamburger moment
sequence.

3) D0 > 0,D1 > 0, · · · ,Dr > 0,Dr+1 = 0 where r ≤ E(m/2) − 1. In this
case, we construct the Jacobi matrix

Jr =





















b0 a0 0 0 0 0
a0 b1 a1 0 0 0
0 a1 b2 a2 0 0

· · · · · · . . .
. . .

. . . · · ·
· · · · · · · · · . . .

. . . ar−1

· · · · · · · · · · · · ar−1 br





















.

Then, we compare cr,k and sk where cr,k is the entry in the left upper corner of
the matrix Jk

r . Let us note that there is no need to calculate Jk
r . In fact if Lk

1

is the first row of Jk
r , then Lk

1 = Lk−1
1 × J2 and cr,k = Lk−1

1 × Jr ×





1
0
0



 .

If cr,k = sk for all k ∈ {1, · · · ,m} then s is a Hamburger moment se-
quence, otherwise s is not a Hamburger moment sequence.

To end this paper, we propose an example to illustrate the efficiency of this
algorithm.
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Example 11. Consider the following finite sequence

s =

(

1, 1, 2,
13

4
,
47

8
,
159

16
,
561

32
,
1927

64
,
6733

128
,
23271

256

)

.

We have

D0 = s0 = 1, D1 = 1, D2 = 5/16, and D3 = 0.

The orthogonal polynomials associated to the positive definite sequence s∗ =
(

1, 1, 2, 134 ,
47
8

)

, are

P0 = 1, P1 = x− 1, and P2 =
4
√
5

5
(x2 − 5

4
x− 3

4
),

and

a0 = 1, a1 =

√
5

4
, b0 = 1, b1 =

1

4
, and b2 =

−3

4
.

The Jacobi matrix is

J2 =





1 1 0

1 1/4
√
5/4

0
√
5/4 −3/4



 .

Now, we compare c2,k and sk, for 1 ≤ k ≤ 9.

c2,1 = 1 = s1,

l11 =
(

1 1 0
)

, then c2,2 = l11 × J2 ×





1
0
0



 = 2 = s2,

l21 =

(

2
5

4

√
5

4

)

, then c2,3 = l21 × J2 ×





1
0
0



 =
13

4
= s3,

l31 =

(

13

4

21

8

√
5

8

)

, then c2,4 = l31 × J2 ×





1
0
0



 =
47

8
= s4,

l41 =

(

47

8

130

32

9
√
5

16

)

, then c2,5 = l41 × J2 ×





1
0
0



 =
159

16
= s5,

l51 =

(

159

16

243

32

19
√
5

32

)

, then c2,6 = l51 × J2 ×





1
0
0



 =
561

32
= s6,
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l61 =

(

561

32

805

64

93
√
5

64

)

, then c2,7 = l61 × J2 ×





1
0
0



 =
1927

64
= s7,

l71 =

(

1927

64

2879

128

263
√
5

128

)

, then c2,8 = l71 × J2 ×





1
0
0



 =
6733

128
= s8,

l81 =

(

6733

128

9805

256

1045
√
5

256

)

, then c2,9 = l81 × J2 ×





1
0
0



 =
23271

256
= s9.

Thus, s is a Hamburger moment sequence.
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