ON THE MAGNETIC RADIAL
SCHRÖDINGER-HARTREE EQUATION
Elena Nikolova1, Mirko Tarulli2, George Venkov3 1 Department of Information Engineering, Computer
Science and Mathematics, University of L'Aquila
Via Vetoio, L'Aquila - 67100, ITALY
2 Department of Mathematical Analysis and
Differential Equations, Technical University of Sofia
Kliment Ohridski Blvd. 8, Sofia - 1000, BULGARIA
& Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 8, Sofia - 1113, BULGARIA
& Department of Mathematics, University of Pisa
Largo Bruno Pontecorvo 5, Pisa - 56100, ITALY
3 Department of Mathematical Analysis and
Differential Equations, Technical University of Sofia
Kliment Ohridski Blvd. 8, Sofia - 1000, BULGARIA
We prove, in any space dimension , the decay in the energy space for the defocusing magnetic Schrödinger-Hartree equation with radial initial data in . We will exhibit also new Morawetz inequalities and localized correlation estimates.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. Arora, Scattering of radial data in the focusing NLS and generalized
Hartree equation, Discrete Contin. Dyn. Syst., 39, No 11 (2019), 6643-
6668.
[2] A. Arora, S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math. J., 71, No 3 (2021), 619-672.
[3] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in
Mathematics, 10, New York University Courant Institute of Mathematical
Sciences, New York, 2003.
[4] J. Colliander, M. Czubak, J. J. Lee, Interaction Morawetz estimate for the
magnetic Schrödinger equation and applications, Adv. Differ. Equ., 1, No
9 (2014), 805-832.
[5] P. D’Ancona, L. Fanelli, L. Vega, N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258, No 10
(2010), 3227-3240.
[6] A. Elgart, B. Schlein, Mean field dynamics of boson stars, Comm. Pure
Appl. Math., 60, No 4 (2007), 500-545.
[7] L. Fanelli, L. Vega, Magnetic virial identities, weak dispersion and
Strichartz inequalities, Math. Ann., 344 (2009), 249-278.
[8] J. Ginibre, T. Ozawa, Long range scattering for nonlinear Schrödinger
and Hartree equations in space dimension n ≥ 2, Comm. Math. Phys.,
151 (1993), 619-645.
[9] J. Ginibre, G. Velo, Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations, Quart. Appl. Math., 68 (2010), 113-134.
[10] T. Kato, Pertubation Theory for Linear Operators, 2, Springer-Verlag,
Berlin, 1980.
[11] E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of
critical type, Math. Phys. Anal. Geom., 10, No 1 (2007), 43-64.
[12] M. Lewin, N. Rougerie, Derivation of Pekar’s polarons from a microscopic
model of quantum crystal, SIAM J. Math. Anal., 45, No 3 (2013), 1267-
1301.
[13] C. Miao, G. Xu, L. Zhao, Global well-posedness and scattering for the
energy-critical, defocusing Hartree equation for radial data, J. Funct.
Anal., 252, No 2 (2007), 605-627.
[14] K. Nakanishi, Energy scattering for Hartree equations, Math. Res. Lett.,
6 (1999), 107-118.
[15] H. Nawa, T. Ozawa, Nonlinear scattering with nonlocal interactions,
Comm. Math. Phys., 146 (1992), 259-275.
[16] M. Tarulli, H 2 -scattering for systems of weakly coupled fourth-order NLS
equations in low space dimensions, Potential Anal., 51, No 2 (2019), 291-
313.
[17] M. Tarulli and G. Venkov, Decay and scattering in energy space for the
solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations, J. Evol. Equ., 21 (2021), 1149-1178.
[18] M. Tarulli and G. Venkov,
Decay in energy space for the solution of fourth-order Hartree-Fock equations with general non-local interactions, J. Math. Anal. Appl., 516, No 2 (2022), Art. 126533;
https://doi.org/10.1016/j.jmaa.2022.126533.