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1. Introduction

Fractional calculus is very important in mathematical modeling of various phe-
nomena in quantum mechanics, engineering, hydrology, viscoelasticity, control
systems, bioscience, and other sciences [2, 6, 7, 11, 18, 21, 22, 23, 24, 32, 42].
The fractional derivative possesses memory and nonlocal properties, simultane-
ously, which assists in accurately and efficiently describing different nonlinear
phenomena in comparison to the derivative of integer-order [19]. This makes
the fractional derivative a powerful tool when modeling complex dynamical
systems.

In the past few years, there have been various approximations or numerical
techniques developed to solve fractional equations. Research in [10] utilized a
group iterative method to solve the two-dimensional time fractional advection-
diffusion equation. Furthermore, some time-fractional diffusion equations [4, 9,
43] and space-fractional diffusion equations [33, 34, 35] have sometimes been
solved using various sweeping iterative methods. Another equation includes
the two-dimensional time-fractional telegraph equation which has been solved
on the rotated iterative method [5] and by utilizing the explicit group iterative
method [3].

These equations are discretized using suitable finite difference approxima-
tions that generate a system of linear equations that is large and sparse in the
form of Au = b, where there is a sparse matrix A with known non-singular
values, a column vector b that is constant, and a column vector u with the
unknown values. When solving a system of linear equations, it is more suitable
to apply iterative methods due to the sparsity of the matrix A.

Additionally, there also have been many relaxation schemes developed which
increase the convergence rate of the iterative methods. These begin with the
Gauss Seidel (GS) benchmark scheme. The Successive Overrelaxation (SOR)
scheme was then developed [15, 40], where a weighted parameter ω is added to
speed up the convergence rate [26, 37]. Moreover, researchers in [20] invented
the Modified SOR (MSOR) scheme, which combines the concept of red-black
ordering with the SOR scheme, hence the weighted parameters ωr and ωb are
added. The MSOR scheme has a faster convergence rate compared to the
SOR scheme, as shown in [13]. In addition, Hadjidimos [16] developed an
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Accelerated Overrelaxation (AOR) scheme that generalizes the SOR scheme
using two weighted parameters, which are θ and ω. Some research has validated
the superiority of the AOR scheme in terms of convergence rate when compared
to the SOR scheme [8, 36, 38]. Thus, this research aims to experiment on a
relaxation scheme that has even more weighted parameters and validate its
superiority when compared to the MSOR and AOR schemes.

2. Derivation of fractional Poisson equation

In this research, the finite difference methods together with various relaxation
schemes are examined to solve the following fractional Poisson equation:

∂αu

∂xα
+

∂αu

∂yα
= f(x, y). (1)

The parameter α is the fractional order of the spatial derivative, where it is
considered to be 1 ≤ α ≤ 2, and the f(x, y) function in Equation (1) is of real
values such that f : R2 → R.

Riemann-Liouville fractional derivative

The Riemann-Liouville fractional derivative of order α is defined as

Dα
xf(x) =

dαf(x)

dxα
=

1

Γ(n− α)

dn

dxn

x
∫

0

(x− t)n−α−1f(t)dt (2)

such that the function f : R → R, x → f(x) has continuous derivatives of the
integer-order n where n− 1 ≤ α ≤ n [1, 27, 30] and the order is α ≥ 0.

Shifted Grünwald estimate

The shifted Grünwald formula for the case of 1 ≤ α ≤ 2 is defined as

dαf

dxα
= lim

M→∞

1

hα

M
∑

k=0

gk · f(x− (k − 1)h)

which further defines the shifted Grünwald estimate to the fractional derivative
as follows:

dαf

dxα
=

1

hα

M
∑

k=0

gk · f(x− (k − 1)h) +O(hα) (3)
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given that h =
1

M
, M is a positive integer and gk is the normalized Grünwald

weight defined as

gk = (−1)k
Γ(α+ 1)

Γ(α− k + 1)Γ(k + 1)
for k = 0, 1, 2, . . . ,

where Γ is the Gamma function. The normalized weights are dependent on the
index k and the order α [25, 30, 31].

Consider the fractional Poisson equation (1) on the unit square Ω = {(x, y)|
(x, y) ∈ [0, 1] × [0, 1]} with Dirichlet boundary conditions. The uniform Carte-
sian grid consisting of grid points (xi, yj) where xi = ih, yj = jh for i, j =
1, 2, . . . , (n − 1) and denote ui,j as the approximation to u(xi, yj). In order to
discretize Equation (1), both the x-derivatives and y-derivatives are replaced
with shifted Grünwald finite differences, which gives

1

hα

i+1
∑

s=0

gs · ui−s+1,j +
1

hα

j+1
∑

z=0

gz · ui,j−z+1 = fi,j (4)

and can be rearranged to

ui,j = −
1

2g1

(

g0ui+1,j + g0ui,j+1 +

i+1
∑

s=2

gs · ui−s+1,j

+

j+1
∑

z=2

gz · ui,j−z+1 − hαfi,j

)

.

(5)

The approximation of Equation (5) will form the following linear system of
equations

Au = b. (6)

Matrix A is then decomposed into

A = D − U − L, (7)

where there are the diagonal matrix D, the upper triangular matrix U and the
lower triangular matrix L. By substituting Equation (7) into Equation (6) and
with some manipulation, the general formulae for some well-known relaxation
schemes are developed.
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3. Fractional finite difference method with relaxation schemes

As mentioned in Introduction, various relaxation schemes have been developed
throughout the years that increase the convergence rate of iterative methods.
Figures 1 and 2 will assist in explaining these schemes.

Figure 1: (a) The natural ordering system of the solution domain for n = 6;
(b) The fractional stencil for every point in the solution domain.
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Figure 2: (a) The red-black ordering system of the solution domain for n = 6;
The fractional stencil for every point of the solution domain (b) when i is odd
and (c) when i is even; The fractional stencil for every point of the solution
domain (d) when i is odd and (e) when i is even.



A MODIFIED ACCELERATED OVERRELAXATION (MAOR)... 717

3.1. Gauss-Seidel (GS)

The general formula of the GS scheme is defined as

uk+1 = (D − L)−1
[

Uuk + b
]

(8)

and by referencing the fractional stencil in Figure 1 (b), will yield

uk+1
i,j = −

1

2g1

(

g0u
k
i+1,j + g0u

k
i,j+1 +

i+1
∑

s=2

gs · u
k+1
i−s+1,j

+

j+1
∑

z=2

gz · u
k+1
i,j−z+1 − hαfi,j

)

.

(9)

3.2. Successive Overrelaxation (SOR)

The SOR scheme is an extension of the GS scheme, where it includes ω as a
weighted parameter, as shown below:

uk+1 = (D − ωL)−1
[

((1− ω)D + ωU)uk + ωb
]

(10)

and by also referencing the fractional stencil in Figure 1 (b), will yield

uk+1
i,j = −

ω

2g1

(

g0u
k
i+1,j + g0u

k
i,j+1 +

i+1
∑

s=2

gs · u
k+1
i−s+1,j

+

j+1
∑

z=2

gz · u
k+1
i,j−z+1 − hαfi,j

)

+ (1− ω)uki,j .

(11)

3.3. Modified SOR (MSOR)

The MSOR scheme combines the concept of red-black ordering into the SOR
scheme, which adds the weighted parameters ωr and ωb. Hence, the general
formula for the MSOR scheme is as follows:

uk+1 = (D − ωr,bL)
−1
[

((1− ωr,b)D + ωr,bU) uk + ωr,bb
]

(12)
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and by referencing the fractional stencils in Figures 2 (b) and (c) for every
point and Figures 2 (d) and (e) for every point, will yield

uk+1
i,j = −

ωr

2g1

(

g0u
k
i+1,j + g0u

k
i,j+1 +

i+1
∑

s=2

gs · u
k+1
i−s+1,j

+

j+1
∑

z=2

gz · u
k+1
i,j−z+1 − hαfi,j

)

+ (1− ωr)u
k
i,j ,

(13)

uk+1
i,j = −

ωb

2g1

(

g0u
k+1
i+1,j + g0u

k+1
i,j+1 +

i+1
∑

s=2

gs · u
k+1
i−s+1,j

+

j+1
∑

z=2

gz · u
k+1
i,j−z+1 − hαfi,j

)

+ (1− ωb)u
k
i,j.

(14)

3.4. Accelerated Overrelaxation (AOR)

This scheme was developed as a generalization of the SOR scheme using two
weighted parameters, which are θ and ω. Hence, the general formula for the
AOR scheme is as follows:

uk+1 = (D − θL)−1
[

[(1− ω)D + (ω − θ)L+ ωU ] uk + ωb
]

(15)

and by referencing the fractional stencil in Figure 1 (b), will yield

uk+1
i,j = −

θ

2g1

(

i+1
∑

s=2

gs · (u
k+1
i−s+1,j − uki−s+1,j)

+

j+1
∑

z=2

gz · (u
k+1
i,j−z+1 − uki,j−z+1)

)

−
ω

2g1

(

g0u
k
i+1,j + g0u

k
i,j+1 +

i+1
∑

s=2

gs · u
k
i−s+1,j

+

j+1
∑

z=2

gz · u
k
i,j−z+1 − hαfi,j

)

+ (1− ω)uki,j.

(16)

The previous researches mentioned in the introduction found that the SOR
scheme converges faster than the GS scheme. Correspondingly, both the MSOR
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and AOR schemes converge faster than the SOR scheme. However, no com-
parison has been made between both schemes. In the following section, we
will discuss a relaxation scheme that converges even faster than the previously
mentioned schemes.

4. Fractional finite difference method with the MAOR scheme

Hadjidimos et al. [17] introduced a theory of the MAOR scheme which is a gen-
eralization of the AOR scheme. Their research stated that the MAOR scheme
minimizes the extrapolation of previous schemes with distinctive parameters
that correspond to the row blocks of matrices for determined choice of the ac-
celeration and relaxation matrices. Additionally, the convergence analysis for
two-cyclic matrices was also provided. The concept of two-cyclic matrices is
similar to the idea of the red-black ordering system, as shown in Figure 2 (a),
where both θ and ω are defined as

θ =

[

θrIr 0
0 θbIb

]

, ω =

[

ωrIr 0
0 ωbIb

]

with the weighted parameters on the points denoted as θr and ωr, the weighted
parameters on the points denoted as θb and ωb, and the identity matrices Ir
and Ib. Hence, the general formula for the MAOR scheme is defined as

uk+1 = (D − θr,bL)
−1
[

[(1− ωr,b)D + (ωr,b − θr,b)L+ ωr,bU ]uk

+ωr,bb] .
(17)

Research in [14, 39] utilized the MAOR scheme on their respective problems,
and both concluded that this scheme produces the least number of iterations.
Thus, this research proposes an MAOR scheme based on the fractional finite
difference iterative method for solving the fractional Poisson equation (1). Since
this scheme applies the red-black ordering system, the updated grid point on
iteration k + 1 for the two stencils can be shown as in Figure 3.

By applying Equation (17) on Equation (6) with the stencils in Figure 3,
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Figure 3: The stencils in variable k for (a) points when i is odd; (b) points
when i is even; (c) points when i is odd and (d) points when i is even.

the following equations are developed:

uk+1
i,j = −

θr

2g1

(

i+1
∑

s=2

gs · (u
k+1
i−s+1,j − uki−s+1,j)

+

j+1
∑

z=2

gz · (u
k+1
i,j−z+1 − uki,j−z+1)

)

−
ωr

2g1

(

g0u
k
i+1,j + g0u

k
i,j+1 +

i+1
∑

s=2

gs · u
k
i−s+1,j

+

j+1
∑

z=2

gz · u
k
i,j−z+1 − hαfi,j

)

+ (1− ωr)u
k
i,j,

(18)
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uk+1
i,j = −

θb

2g1

(

g0(u
k+1
i+1,j − uki+1,j) + g0(u

k+1
i,j+1 − uki,j+1)

+

i+1
∑

s=2

gs · (u
k+1
i−s+1,j − uki−s+1,j)

+

j+1
∑

z=2

gz · (u
k+1
i,j−z+1 − uki,j−z+1)

)

−
ωb

2g1

(

g0u
k
i+1,j + g0u

k
i,j+1 +

i+1
∑

s=2

gs · u
k
i−s+1,j

+

j+1
∑

z=2

gz · u
k
i,j−z+1 − hαfi,j

)

+ (1− ωb)u
k
i,j .

(19)

Every and point in the solution domain is arranged as displayed in Figure 2
(a). Using either Equations (18) or (19) will continuously generate the iteration
on each point until it successfully achieves the convergence criteria. Algorithm
1 summarizes the iterative process for the MAOR scheme.

Algorithm 1: The iterative process for the MAOR scheme.

All points in the domain R
2 are defined into and as shown in

Figure 2 (a);
The initial values for all matrices and relaxation parameters ωr, ωb, θr
and θb are set;

Set error tolerance ε;

while |uk+1 − uk| > ε do
Compute all points using Equation (18);
Compute all points using Equation (19);

end

5. Convergence analysis

Based on the analysis done by Hadjidimos et al. [17], which was on second order
finite difference, the functional relationship that connects the sets of eigenvalues
for the fractional finite difference becomes

(λ+ ωr − 1)(λ + ωb − 1) = (ωr − θr + θrλ)(ωb − θb + θbλ)µ
2, (20)
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where λ ∈ σ(Lθ,ω) with Lθ,ω := (I − θL)−1 [1− ωr + (ωr − θr)L +ωrU ] and
µ ∈ σ(A). Dropping the indices and simplifying the notation in Equation (20)
yields

λ2 − bλ+ c = 0, (21)

where

b :=
2− ω1 − ω2 + (ω1r2 + ω2r1 − 2r1r2)µ

2

1− r1r2µ2
,

c :=
(ω1 − 1)(ω2 − 1) + (ω1 − r1)(ω2 − r2)µ

2

1− r1r2µ2

(22)

and ω1 := ωr, ω2 := ωb, r1 := θr, r2 := θb. It is assumed that ω1, ω2, r1, r2 ∈ R,
ω1ω2 6= 0,, r1r2 6= 0, and σ(A) ∈ R. Let σ(A) ⊂ [−µ, µ], µ = ρ(A), and
σ(A2) ⊂ [µ2, µ2] =: M where 0 ≤ µ2 ≤ µ2. Hence, we will now prove Theorem
4 of [17].

Proof. The MAOR scheme converges if and only if for all µ2 ∈ M the roots
of Equation (21) are less than modulus one. With Lemma 2.1 of [41], this holds
if and only if

|c| < 1, |b| < 1 + c, for all µ2 ∈ M. (23)

In view of Equation (22), Equation (23) is equivalent to

ω1ω2(1− µ2) > 0,

− 2 < ω1ω2(1− µ2)− ω1 − ω2 + (ω1r2 + ω2r1 − 3r1r2)µ
2 < 0,

4 + ω1ω2(1− µ2)− 2ω1 − 2ω2 + 2(ω1r2 + ω2r1 − 3r1r2)µ
2 > 0,

for all µ2 ∈ M,

or to

0 < ω1ω2(1− µ2) < 4,

ω1 + ω2 − 2−
1

2
ω1ω2(1− µ2) < (ω1r2 + ω2r1 − r1r2)µ

2

< ω1 + ω2 − ω1ω2(1− µ2)

for all µ2 ∈ M. (24)

Thus, for convergence to exist, it must either be i) µ < 1 or ii) µ > 1.
Case i: Let 0 ≤ µ ≤ µ < 1. By assuming that µ > 0, then Equation (24)

is equivalent to either

ω2 > 0, 0 < ω1 <
4

ω2(1− µ2)
, (25)
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max
µ2∈M

B(µ2) < r1, r2 < min
µ2∈M

C(µ2),

or

ω2 < 0,
4

ω2(1− µ2)
< ω1 < 0, (26)

max
µ2∈M

C(µ2) < r1, r2 < min
µ2∈M

B(µ2),

where

B(µ2) :=
1

(ω1 + ω2)µ2

(

ω1 + ω2 − 2−
1

2
ω1ω2(1− µ2)

)

C(µ2) :=
1

(ω1 + ω2)µ2

(

ω1 + ω2 − ω1ω2(1− µ2)
)

.

(27)

It can be found that

∂B(µ2)

∂µ2
=

(2− ω1)(2 − ω2)

2(ω1 + ω2)µ4
,

∂C(µ2)

∂µ2
=

ω1ω2 − ω1 − ω2

(ω1 + ω2)µ4
. (28)

The extreme values for B and C in Equation (25) and Equation (26) are de-
termined by the signs of the expressions in Equation (28). For these signs, not
only the intervals for ω1 and ω2 defined in Equation (25) and Equation (26)
must be taken into account, but also the relative positions of ω2 with respect

to (wrt) 2, that of ω1 wrt 2 and
ω2

ω2 − 1
and therefore the relative position of

ω2 wrt 1 and that of
ω2

ω2 − 1
wrt 2. By considering all possible subdomains in

the (ω1, ω2)-plane, the behavior of B(µ2) and C(µ2) can be studied and con-
sequently define the ranges for r1 and r2. The result of this analysis can be
referred to in Table 1. From there, the domain of convergence can be defined
by

0 < ω1 < 2, 0 < ω2 < 2, B(µ2) < r1, r2 < C(µ2). (29)
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Table 1: 0 ≤ µ ≤ µ < 1. (Increasing (I), Decreasing (D)).

Case Range Sub- Range Behavior Behavior Range Range

of ω2 case of ω1 of B(µ2) of C(µ2) of r1 of r2

1 0 < ω2 ≤
2

1 − µ

(i) 0 < ω1 ≤ 2 I D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(ii) 2 ≤ ω1 <
4

ω2(1 − µ2)
D D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

2
2

1 − µ
≤ ω2 ≤ 2

(i) 0 < ω1 ≤ 2 I D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(ii) 2 ≤ ω1 ≤
ω2

ω2 − 1
D D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(iii)
ω2

ω2 − 1
≤ ω1 <

4

ω2(1 − µ2)
D I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

3 2 ≤ ω2 ≤
2

1 − µ2

(i) 0 < ω1 ≤
ω2

ω2 − 1
D D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(ii)
ω2

ω2 − 1
≤ ω1 ≤ 2 D I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(iii) 2 ≤ ω1 <
4

ω2(1 − µ2)
I I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

4
2

1 − µ2
≤ ω2 ≤

2

1 − µ

(i) 0 < ω1 ≤
ω2

ω2 − 1
D D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(ii)
ω2

ω2 − 1
≤ ω1 <

4

ω2(1 − µ2)
D I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

5
2

1 − µ
≤ ω2 < ∞ 0 < ω1 <

4

ω2(1 − µ2)
D D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

6 −∞ < ω2 < 0
4

ω2(1 − µ2)
< ω1 < 0 D D C(µ2) < r1 < B(µ2) C(µ2) < r2 < B(µ2)
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Table 2: 1 ≤ µ ≤ µ. (Increasing (I), Decreasing (D)).

Case Range Sub- Range Behavior Behavior Range Range

of ω2 case of ω1 of B(µ2) of C(µ2) of r1 of r2

1 0 < ω2 ≤
2

1 + µ

(i)
ω2

ω2 − 1
≤ ω1 < 0 D I C(µ2) < r1 < B(µ2) C(µ2) < r2 < B(µ2)

(ii)
4

ω2(1 − µ2)
< ω1 ≤

ω2

ω2 − 1
D D C(µ2) < r1 < B(µ2) C(µ2) < r2 < B(µ2)

2
2

1 + µ
≤ ω2 ≤ 2

4

ω2(1 − µ2)
< ω1 < 0 D I C(µ2) < r1 < B(µ2) C(µ2) < r2 < B(µ2)

3 2 ≤ ω2 < ∞
4

ω2(1 − µ2)
< ω1 < 0 I I C(µ2) < r1 < B(µ2) C(µ2) < r2 < B(µ2)

4
2

1 − µ2
≤ ω2 < 0

(i) 0 < ω1 ≤
ω2

ω2 − 1
I I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(ii)
ω2

ω2 − 1
≤ ω1 < 2 I D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(iii) 2 ≤ ω1 <
4

ω2(1 − µ2)
D D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

5
2

1 − µ
≤ ω2 <

2

1 − µ2

(i) 0 < ω1 ≤
ω2

ω2 − 1
I I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

(ii)
ω2

ω2 − 1
≤ ω1 <

4

ω2(1 − µ2)
I D B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)

6 −∞ < ω2 ≤
2

1 − µ
0 < ω1 <

4

ω2(1 − µ2)
I I B(µ2) < r1 < C(µ2) B(µ2) < r2 < C(µ2)
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Case ii: Let 1 ≤ µ ≤ µ. Then Equation (24) is equivalent to either

ω2 > 0,
4

ω2(1− µ2)
< ω1 < 0, (30)

max
µ2∈M

B(µ2) < r1, r2 < min
µ2∈M

C(µ2),

or

ω2 < 0, 0 < ω1 <
4

ω2(1− µ2)
, (31)

max
µ2∈M

C(µ2) < r1, r2 < min
µ2∈M

B(µ2),

where B(µ2) and C(µ2) are given in Equation (27). Following an analysis
similar to the one in Case i, its result can be referred to in Table 2. The
derivation of both tables and the result of Equation (29) complete the proof.

6. Numerical results and discussions

A numerical test was executed to investigate the performance of the MAOR
scheme for α = 1.25, 1.50, 1.75. The tests were carried out using Code::Blocks
for the C++ programming language on a laptop with an Intel(R) Core(TM)
i5-7200U COU @ 2.50GHz and 4.00GB RAM running Windows 10. The pro-
posed scheme was compared with the GS, SOR, MSOR and AOR schemes on
fractional finite difference iterative methods. Throughout the computational
experiments, a tolerance of ε = 10−10 was utilized for the convergence criteria.

The computational cost is an important factor in developing fast iterative
numerical schemes as it estimates the total number of arithmetic operations to
be implemented per iteration. A higher computational cost would produce a
higher computational time, which indicates slowness in the convergence. Here,
the computational cost for each scheme is measured by computing the total
of arithmetic operations involved, as illustrated in Table 3. From the table,
the term Ite corresponds to the number of iterations for their respective α,
and when α = 2.00, Equation (1) will revert back to a second order Poisson
equation [28, 29], which is solved using the second order finite difference method.
Hence the difference in the total number of operations is compared to when
α = 1.25, 1.50, 1.75.



A MODIFIED ACCELERATED OVERRELAXATION (MAOR)... 727

Table 3: The computational complexities between relaxation schemes (σ =
M − 1).

Scheme
Total operations per iteration

α = 1.25, 1.50, 1.75 α = 2.00

GS σ2(2σ + 7) ∗ Ite 6σ2 ∗ Ite
SOR σ2(2σ + 11) ∗ Ite 10σ2 ∗ Ite
MSOR σ2(2σ + 11) ∗ Ite 10σ2 ∗ Ite
AOR 4σ2(σ + 5) ∗ Ite 16σ2 ∗ Ite
MAOR 2(σ2(2σ + 11) − 1) ∗ Ite 5(3σ2 − 1) ∗ Ite

In order to validate the superiority of the proposed scheme, all five schemes
were executed to solve the following example problem [12]

∂αu

∂xα
+

∂αu

∂yα
= Γ(α+ 1)(xα + yα)

on the solution domain 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and boundary conditions

u(x, 0) = 0 u(0, y) = 0

u(x, 1) = xα u(0, 1) = yα

with an exact solution u(x, y) = (xy)α. The error is identified as

Error =
1

(M − 1)2

√

√

√

√

M−1
∑

i,j=1

(Ui,j − ui,j)2 (32)

in which Ui,j represents the exact solution and ui,j represents the numerical
solution. The results are shown in Tables 4 and 5 for the above example problem
with several mesh sizes of 10, 20, 40 and 80 and different values of α.

From Tables 4 and 5, the criteria examined are the number of iterations
(Ite), the error which was calculated using Equation (32), the execution time
(in seconds), and the total number of arithmetic operations (Total Ops). These
criteria were used to compare the relaxation schemes executed on several mesh
sizes and different values of α. The results for α = 2.00 are considered bench-
mark results when compared with the other values of α. Through observing
the results, it can be seen that as the mesh size M increases, the proposed
MAOR scheme for fractional Poisson equation produces the least number of
iterations. However, there was a 17 − 65% increase in execution time when
the MAOR scheme was compared to the MSOR scheme, which was supported
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by a higher number of complexities for the MAOR scheme that utilized four
weighted parameters as compared to the MSOR scheme that utilized only two
weighted parameters. Here, there can be an open problem to reduce the number
of weighted parameters and still produce a high convergence rate.

7. Conclusion

This research has successfully developed a fractional finite difference method
with a shifted Grünwald estimate with the MAOR scheme and has also success-
fully obtained the approximate solution for fractional Poisson equation. The
results in Tables 4 and 5 show that in comparison with previous relaxation
schemes, the MAOR scheme has the least number of iterations; however, there
is a slight increase in execution time due to the higher number of computational
complexities. For future work, this research will be implemented on different
group iterative methods for solving fractional equations, which will be reported
separately.
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Table 4: Performance comparison between relaxation schemes at α = 1.25 and α = 1.50.

M Scheme
α = 1.25 α = 1.50

Ite Parameters Error Time Total Ops Ite Parameters Error Time Total Ops

10

GS 81 - 1.16E-05 0.016 164,025 116 - 2.46E-06 0.031 234,900
SOR 56 ω = 1.23 1.16E-05 0.015 131,544 56 ω = 1.41 2.46E-06 0.016 131,544

MSOR 28 ωr = 1.15, ωb = 1.26 1.16E-05 0.000 65,772 27 ωr = 1.27, ωb = 1.42 2.46E-06 0.000 63,423
AOR 43 θ = 1.59, ω = 1.12 1.16E-05 0.016 195,048 44 θ = 1.58, ω = 1.31 2.46E-06 0.016 199,584

MAOR 23 θr = 1.15, θb = 1.31, 1.16E-05 0.015 108,008 25 θr = 1.78, θb = 1.42, 2.46E-06 0.015 117,400
ωr = 1.05, ωb = 1.18 ωr = 1.19, ωb = 1.38

20

GS 198 - 2.00E-06 0.500 3,216,510 331 - 4.27E-07 0.765 5,377,095
SOR 140 ω = 1.27 2.00E-06 0.234 2,476,460 154 ω = 1.51 4.27E-07 0.266 2,724,106

MSOR 63 ωr = 1.21, ωb = 1.35 2.00E-06 0.109 1,114,407 56 ωr = 1.47, ωb = 1.51 4.27E-07 0.094 990,584
AOR 99 θ = 1.98, ω = 1.23 2.00E-06 0.343 3,430,944 102 θ = 1.93, ω = 1.34 4.27E-07 0.375 3,534,912

MAOR 47 θr = 1.11, θb = 1.30, 2.00E-06 0.171 1,662,672 48 θr = 1.20, θb = 1.45, 4.27E-07 0.172 1,698,048
ωr = 1.20, ωb = 1.04 ωr = 1.45, ωb = 1.30

40

GS 472 - 3.36E-07 10.844 61,022,520 915 - 6.98E-08 20.250 118,295,775
SOR 347 ω = 1.26 3.36E-07 6.109 46,973,043 454 ω = 1.51 6.97E-08 7.985 61,457,526

MSOR 156 ωr = 1.25, ωb = 1.31 3.36E-07 2.750 21,117,564 151 ωr = 1.55, ωb = 1.57 6.97E-08 2.656 20,440,719
AOR 257 θ = 1.98, ω = 1.29 3.36E-07 9.078 68,797,872 281 θ = 1.99, ω = 1.53 6.97E-08 9.891 75,222,576

MAOR 102 θr = 1.10, θb = 1.42, 3.36E-07 3.594 27,615,072 92 θr = 1.23, θb = 1.47, 6.97E-08 3.375 24,907,712
ωr = 1.16, ωb = 1.01 ωr = 1.52, ωb = 1.15

80

GS 1100 - 5.51E-08 273.937 1,132,741,500 2486 - 1.09E-08 614.984 2,559,995,790
SOR 845 ω = 1.23 5.51E-08 167.140 891,246,005 1350 ω = 1.46 1.09E-08 266.922 1,423,884,150

MSOR 388 ωr = 1.25, ωb = 1.27 5.51E-08 76.657 409,234,852 488 ωr = 1.54, ωb = 1.53 1.09E-08 95.828 514,707,752
AOR 628 θ = 1.99, ω = 1.29 5.51E-08 248.078 1,316,900,928 817 θ = 1.99, ω = 1.54 1.09E-08 321.891 1,713,229,392

MAOR 231 θr = 1.01, θb = 1.59, 5.51E-08 91.344 487,284,336 271 θr = 1.10, θb = 1.46, 1.09E-08 141.937 571,662,576
ωr = 1.02, ωb = 1.02 ωr = 1.56, ωb = 1.04
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Table 5: Performance comparison between relaxation schemes at α = 1.75 and α = 2.00.

M Scheme
α = 1.75 α = 2.00

Ite Parameters Error Time Total Ops Ite Parameters Error Time Total Ops

10

GS 153 - 1.82E-06 0.047 309,825 192 - 5.71E-11 0.000 93,312
SOR 50 ω = 1.51 1.82E-06 0.016 117,450 42 ω = 1.53 2.56E-12 0.000 34,020

MSOR 30 ωr = 1.41, ωb = 1.47 1.82E-06 0.016 70,470 37 ωr = 1.46, ωb = 1.61 1.23E-12 0.000 29,970
AOR 44 θ = 1.55, ω = 1.47 1.82E-06 0.016 199,584 42 θ = 1.53, ω = 1.49 4.84E-12 0.000 54,432

MAOR 29 θr = 1.44, θb = 1.56, 1.82E-06 0.016 136,184 35 θb = 1.57, 1.58E-11 0.000 42,350
ωr = 1.26, ωb = 1.47 ωr = 1.43, ωb = 1.50

20

GS 500 - 2.33E-07 1.234 8,122,500 712 - 1.08E-10 0.015 1,542,192
SOR 132 ω = 1.69 2.33E-07 0.234 2,334,948 84 ω = 1.73 4.37E-12 0.000 303,240

MSOR 59 ωr = 1.59, ωb = 1.65 2.33E-07 0.109 1,043,651 74 ωr = 1.69, ωb = 1.78 2.53E-12 0.000 267,140
AOR 94 θ = 1.83, ω = 1.52 2.33E-07 0.344 3,257,664 83 θ = 1.73, ω = 1.72 6.54E-12 0.015 479,408

MAOR 56 θr = 1.37, θb = 1.67, 2.33E-07 0.188 1,981,056 69 θb = 1.77, 9.04E-12 0.000 373,290
ωr = 1.52, ωb = 1.60 ωr = 1.61, ωb = 1.68

40

GS 1596 - 2.95E-08 35.547 206,338,860 2610 - 2.12E-10 0.094 23,818,860
SOR 376 ω = 1.78 2.95E-08 6.562 50,898,744 169 ω = 1.86 1.18E-12 0.016 2,570,490

MSOR 121 ωr = 1.73, ωb = 1.75 2.95E-08 2.110 16,379,649 144 ωr = 1.84, ωb = 1.87 3.90E-12 0.015 2,190,240
AOR 226 θ = 1.99, ω = 1.62 2.95E-08 7.875 60,499,296 165 θ = 1.86, ω = 1.84 1.65E-12 0.016 4,015,440

MAOR 114 θr = 1.45, θb = 1.47, 2.95E-08 4.110 30,863,904 136 θb = 1.81, 5.35E-12 0.015 3,102,160
ωr = 1.74, ωb = 1.15 ωr = 1.81, ωb = 1.72

80

GS 5030 - 3.60E-09 1247.360 5,179,717,950 9511 - 4.15E-10 0.906 356,148,906
SOR 1333 ω = 1.75 3.67E-09 264.562 1,405,953,757 335 ω = 1.93 1.49E-12 0.047 20,907,350

MSOR 280 ωr = 1.79, ωb = 1.82 3.69E-09 55.578 295,324,120 281 ωr = 1.92, ωb = 1.93 9.23E-13 0.031 17,537,210
AOR 753 θ = 1.99, ω = 1.80 3.68E-09 299.469 1,579,022,928 325 θ = 1.93, ω = 1.92 2.65E-12 0.047 32,453,200

MAOR 209 θr = 1.01, θb = 1.64, 3.69E-09 83.093 440,876,304 270 θb = 1.89, 2.51E-12 0.031 25,274,700
ωr = 1.79, ωb = 1.37 ωr = 1.91, ωb = 1.84
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