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1. Introduction

Fractional calculus is very important in mathematical modeling of various phe-
nomena in quantum mechanics, engineering, hydrology, viscoelasticity, control
systems, bioscience, and other sciences [2, 6, 7, 11, 18, 21, 22, 23, 24, 32, 42].
The fractional derivative possesses memory and nonlocal properties, simultane-
ously, which assists in accurately and efficiently describing different nonlinear
phenomena in comparison to the derivative of integer-order [19]. This makes
the fractional derivative a powerful tool when modeling complex dynamical
systems.

In the past few years, there have been various approximations or numerical
techniques developed to solve fractional equations. Research in [10] utilized a
group iterative method to solve the two-dimensional time fractional advection-
diffusion equation. Furthermore, some time-fractional diffusion equations [4, 9,
43] and space-fractional diffusion equations [33, 34, 35| have sometimes been
solved using various sweeping iterative methods. Another equation includes
the two-dimensional time-fractional telegraph equation which has been solved
on the rotated iterative method [5] and by utilizing the explicit group iterative
method [3].

These equations are discretized using suitable finite difference approxima-
tions that generate a system of linear equations that is large and sparse in the
form of Au = b, where there is a sparse matrix A with known non-singular
values, a column vector b that is constant, and a column vector u with the
unknown values. When solving a system of linear equations, it is more suitable
to apply iterative methods due to the sparsity of the matrix A.

Additionally, there also have been many relaxation schemes developed which
increase the convergence rate of the iterative methods. These begin with the
Gauss Seidel (GS) benchmark scheme. The Successive Overrelaxation (SOR)
scheme was then developed [15, 40], where a weighted parameter w is added to
speed up the convergence rate [26, 37]. Moreover, researchers in [20] invented
the Modified SOR (MSOR) scheme, which combines the concept of red-black
ordering with the SOR scheme, hence the weighted parameters w, and wj are
added. The MSOR scheme has a faster convergence rate compared to the
SOR scheme, as shown in [13]. In addition, Hadjidimos [16] developed an
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Accelerated Overrelaxation (AOR) scheme that generalizes the SOR scheme
using two weighted parameters, which are # and w. Some research has validated
the superiority of the AOR scheme in terms of convergence rate when compared
to the SOR scheme [8, 36, 38]. Thus, this research aims to experiment on a
relaxation scheme that has even more weighted parameters and validate its
superiority when compared to the MSOR and AOR schemes.

2. Derivation of fractional Poisson equation

In this research, the finite difference methods together with various relaxation
schemes are examined to solve the following fractional Poisson equation:

0%u 0%

8?+@=f(957?/)' (1)

The parameter « is the fractional order of the spatial derivative, where it is
considered to be 1 < o < 2, and the f(z,y) function in Equation (1) is of real
values such that f: R? — R.

Riemann-Liouville fractional derivative

The Riemann-Liouville fractional derivative of order « is defined as

D3fe) = L — s e wa @

0

such that the function f : R — R,  — f(z) has continuous derivatives of the
integer-order n where n — 1 < a < n [1, 27, 30] and the order is o > 0.

Shifted Griinwald estimate

The shifted Grinwald formula for the case of 1 < a < 2 is defined as

e f 1 Y
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which further defines the shifted Griinwald estimate to the fractional derivative
as follows:
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1
given that h = —, M is a positive integer and gj is the normalized Griinwald

weight defined as

Ia+1)
%:C%ﬁrm—k+nnk+n

for k=0,1,2,...,

where I' is the Gamma function. The normalized weights are dependent on the
index k and the order « [25, 30, 31].

Consider the fractional Poisson equation (1) on the unit square Q = {(x,y)|
(z,y) €[0,1] x [0,1]} with Dirichlet boundary conditions. The uniform Carte-
sian grid consisting of grid points (x;,y;) where z; = ih, y; = jh for i,j =
1,2,...,(n —1) and denote u; ; as the approximation to u(z;,y;). In order to
discretize Equation (1), both the z-derivatives and y-derivatives are replaced
with shifted Griinwald finite differences, which gives

] il 1 J+1
ha Z gs - Uimst1j T 33 Zgz “Uij—zt1 = fi (4)
s=0 2=0

and can be rearranged to

1 i+l
g5 = —2—91 <gouz‘+1,j + goi j+1 + ng “Uj—s+1,5
s=2
(5)

j+1
+ D e Uijoar1 — hafz',j) :

z=2

The approximation of Equation (5) will form the following linear system of
equations

Au =b. (6)
Matrix A is then decomposed into
A=D-U-1L, (7)

where there are the diagonal matrix D, the upper triangular matrix U and the
lower triangular matrix L. By substituting Equation (7) into Equation (6) and
with some manipulation, the general formulae for some well-known relaxation
schemes are developed.
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3. Fractional finite difference method with relaxation schemes

As mentioned in Introduction, various relaxation schemes have been developed
throughout the years that increase the convergence rate of iterative methods.
Figures 1 and 2 will assist in explaining these schemes.

6 j+1
: oo j
4 j1
3 j-2
2 s

1
1

0
0 i

0 1 i-2 i-1 i i+1
0 1 2 3 4 5 6
(a) (b)

Figure 1: (a) The natural ordering system of the solution domain for n = 6;
(b) The fractional stencil for every ® point in the solution domain.
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Figure 2: (a) The red-black ordering system of the solution domain for n = 6;
The fractional stencil for every ® point of the solution domain (b) when ¢ is odd
and (c) when i is even; The fractional stencil for every @ point of the solution
domain (d) when i is odd and (e) when i is even.
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3.1. Gauss-Seidel (GS)

The general formula of the GS scheme is defined as
W= (D — 1) [Uuk + b} ®)

and by referencing the fractional stencil in Figure 1 (b), will yield

-
1 1
k41 k k k+1
Y T Tog, (goum,j + oty ) gs ut
s=2
(9)
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3.2. Successive Overrelaxation (SOR)

The SOR scheme is an extension of the GS scheme, where it includes w as a
weighted parameter, as shown below:

W = (D — wL)™! [((1 —w)D +wU)ub + wb] (10)

and by also referencing the fractional stencil in Figure 1 (b), will yield

i+1
k+1 W k k k+1
Upj = 2 <90Ui+1,j + Gous j41+ Z Gs * Wi—gsy1j
s=2
(11)

j+1
D9 ui - hafm) + (1= wuf;.
z=2
3.3. Modified SOR (MSOR)
The MSOR. scheme combines the concept of red-black ordering into the SOR

scheme, which adds the weighted parameters w, and wy. Hence, the general
formula for the MSOR scheme is as follows:

uF = (D — wpp L) (1= wrp) D + wypU) uF + wppb (12)



718 N.A. Syafiq, M. Othman, N. Senu, F. Ismail

and by referencing the fractional stencils in Figures 2 (b) and (c) for every @
point and Figures 2 (d) and (e) for every @ point, will yield

+1
uk Tl Wr k+1
® u = 2¢ (go Usrg 90U Y gs Ui
. o= (13)
J+1
k
+ Z gz Uij_lz_u - hafi,j) + (1 - Wr)ui‘c,ja
z=2
w +1
k+1 __ b k+1 k+1 k+1
® s 2g; (go Ui+ 90U j1 F ng TWist1,
- (14)

j+1
T Z 9z uf;r—lzﬂ - hafi,j> + (1= wp)uf;.
z=2
3.4. Accelerated Overrelaxation (AOR)
This scheme was developed as a generalization of the SOR scheme using two

weighted parameters, which are § and w. Hence, the general formula for the
AOR scheme is as follows:

W = (D — L) [[(1 — W) D+ (w—0) L+ wU] " +wb (15)

and by referencing the fractional stencil in Figure 1 (b), will yield

i+1
k+1 k—l—l k
U; Z s \Uj_g41.5 — uiferl,j)
j+1
k+1 k
+ Zgz : (ui,j—z+1 - Ui,j—z+1)
z=2

i+1
w
- g (go Z-I—lj + gouz ,J+1 + ng ' Z s+1,5
s=2

Jj+1

+ZQZ' U j— 241 hafi,j) + (1 —wuf;.

The previous researches mentioned in the introduction found that the SOR
scheme converges faster than the GS scheme. Correspondingly, both the MSOR
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and AOR schemes converge faster than the SOR scheme. However, no com-
parison has been made between both schemes. In the following section, we
will discuss a relaxation scheme that converges even faster than the previously
mentioned schemes.

4. Fractional finite difference method with the MAOR scheme

Hadjidimos et al. [17] introduced a theory of the MAOR scheme which is a gen-
eralization of the AOR scheme. Their research stated that the MAOR scheme
minimizes the extrapolation of previous schemes with distinctive parameters
that correspond to the row blocks of matrices for determined choice of the ac-
celeration and relaxation matrices. Additionally, the convergence analysis for
two-cyclic matrices was also provided. The concept of two-cyclic matrices is
similar to the idea of the red-black ordering system, as shown in Figure 2 (a),
where both 6 and w are defined as

0., 0
9_{ 0 ebfb}’

| wely 0
- 0 wplp
with the weighted parameters on the ® points denoted as 6, and w,., the weighted

parameters on the ® points denoted as 8, and wy, and the identity matrices I,
and I. Hence, the general formula for the MAOR scheme is defined as

w1 = (D~ 0,,L) " [[(1 — wrp) D+ (Wi — Orp) L+ wpp U] U

+w,,7bb] . (17)

Research in [14, 39] utilized the MAOR scheme on their respective problems,
and both concluded that this scheme produces the least number of iterations.
Thus, this research proposes an MAOR scheme based on the fractional finite
difference iterative method for solving the fractional Poisson equation (1). Since
this scheme applies the red-black ordering system, the updated grid point on
iteration k + 1 for the two stencils can be shown as in Figure 3.

By applying Equation (17) on Equation (6) with the stencils in Figure 3,
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Figure 3: The stencils in variable k for (a) ® points when 7 is odd; (b) ® points
when i is even; (c) ® points when i is odd and (d) @ points when i is even.

the following equations are developed:

0 i+1
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k+1 _ Hb k+1 k k+1 k
® u =5 (gO(Ui-l—l,j —uiy1) + 90(ug 1y — uiji1)

i1
k+1 k
+ E gs - (Ui_s+1,j - uiferl,j)
s=2

j+1
k-1 k
+ E gz - (ui,j—z-I—l - ui,szrl)) (19)
z=2

i+1
wo k k k
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91 s=2
j+1
k a k
+ Zgz U — W fig | (1= wp)ug;.
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Every @ and @ point in the solution domain is arranged as displayed in Figure 2
(a). Using either Equations (18) or (19) will continuously generate the iteration
on each point until it successfully achieves the convergence criteria. Algorithm
1 summarizes the iterative process for the MAOR scheme.

Algorithm 1: The iterative process for the MAOR scheme.
All points in the domain R? are defined into ® and @ as shown in
Figure 2 (a);
The initial values for all matrices and relaxation parameters w;.,wp, 6,
and 6, are set;
Set error tolerance ¢;
while |u**! — u¥| > ¢ do
Compute all ® points using Equation (18);
Compute all ® points using Equation (19);

end

5. Convergence analysis

Based on the analysis done by Hadjidimos et al. [17], which was on second order
finite difference, the functional relationship that connects the sets of eigenvalues
for the fractional finite difference becomes

()\ + wy — 1)(/\ + wp — 1) = (Wr - 07“ + Qr)\)(OJb - Hb + Hb/\)ﬂ27 (20)
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where A € (%) with %, == (I —0L) ' [1 —w, + (w, — 6,) L 4w, U] and
u € o(A). Dropping the indices and simplifying the notation in Equation (20)
yields

M —bA+c=0, (21)
where
bho— 2 — w1 —wy + (wirp + wary — 2r17g) i
o 1 — ryrop? ’ (22)
_ (w1 =D (w2 = 1) + (w1 — 71) (w2 — r2)pi?
1 —rirou?

and wq := Wy, Wo = wp, 71 := O, 79 := . It is assumed that wy,wq, 1,79 € R,
wiwy # 0,, mira # 0, and o(A) € R. Let 0(4) C [-&, 7], & = p(A), and
o(A?) C [p?, 1] =: M where 0 < p? < 7. Hence, we will now prove Theorem
4 of [17].

Proof. The MAOR scheme converges if and only if for all u> € M the roots
of Equation (21) are less than modulus one. With Lemma 2.1 of [41], this holds
if and only if

le| <1, |b]<14¢, forall p*e M. (23)

In view of Equation (22), Equation (23) is equivalent to

wiwa(1 — p?) > 0,

— 2 < wiwa(1 — p?) — wi — wy + (wirg + wory — 3ryre)p? < 0,
44 wiwy(1 — p?) — 2wy — 2wo + 2(wirg + wory — 3ryre)u® > 0,
for all pu? € M,

or to
0< wlng(l — [LZ) < 4,

1
w1 +wy —2— §w1w2(1 — ,u2) < (wirg + wary — 7“17“2)#2

< wi +ws — wiws(l — ,u2)
for all u? € M. (24)

Thus, for convergence to exist, it must either be i) 7 < 1 or ii) u > 1.
Case i: Let 0 < p <71 < 1. By assuming that g > 0, then Equation (24)
is equivalent to either

4

wr >0, 0<w < ——-se,

(25)
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max B(p?) < 71,79 < min C(u?),

ureM u2eM
or
wa < 0, ﬁ<w1<0, (26)
gg}\)ﬁl C(u?) <ry,r < J?IleiﬁB(/‘Z%
where
B(p?) = . <w1 +wy —2— 1wlwg(l - u2)>
(w1 + wo)p? 2 (27)
C(p?) = m (w1 + w2 — wiwa (1 — p?)) .
It can be found that
OB(?)  (2—wi)2—wy) OC(H?)  wiws —wi —wo (28)

o2 2wy +wo)ut ou?  (wy +wo)ut

The extreme values for B and C' in Equation (25) and Equation (26) are de-
termined by the signs of the expressions in Equation (28). For these signs, not
only the intervals for wy; and wy defined in Equation (25) and Equation (26)
must be taken into account, but also the relative positions of wy with respect

w
to (wrt) 2, that of w; wrt 2 and 2 and therefore the relative position of
w9y —
w
wo wrt 1 and that of 2 wrt 2. By considering all possible subdomains in
wo —

the (w1, ws)-plane, the behavior of B(u?) and C(u?) can be studied and con-
sequently define the ranges for 1 and ro. The result of this analysis can be
referred to in Table 1. From there, the domain of convergence can be defined
by

0<w <2, 0<wy<2, B(u?) <ry,r<C?). (29)
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Table 1: 0 <y <r < 1. (Increasing (I), Decreasing (D)).

Case Range Sub- Range Behavior Behavior Range Range
of wo case of wy of B(u?) of C(u?) of rp of 7o
1 0<wy < [©) 0<w; <2 I D Bu?) <ri <CW?) | B <rp < CW?)
= 3
L-p (it) 2w < e D D B(u?) <71 < C(u?) | B(u?) < ra < C(u?)
wa(l—p
2 () 0<w <2 T D B(p?) <ri < C?) [ B(r?) <1y < C(u?)
-
2 1o Sw2s? (i) 2<w < —2 D D B(u?) <11 < C(i2) | B(u®) < s < C(u?)
‘ - — 2
2 2 2 2 2 r
< < D I B <r <cC B <rg <C
(iii) 1S wq D) (1=) 1 (1) (1=) < ra (1=) :l>
. w2
<< 2 ) 0<w < ) D B(u?) <11 < C(u?) | B(u?) < ra < C(u?) gﬁ
w9 —
3 =2 =Te - w3z 2 2 2 2 =
= (ii) 1§w1§2 D I B(p®) <r1 <C(u") | B(p") <r2 <C(p%) =
wo — o)
3 S
(iii) 2<w < ——— I 1 B(u?) <1 < C(u?) | B(u?) < rz2 < C(u?)
wa(l —p?) z
2 2 o) 0<w < 2 D D B(u?) <11 < C(u?) | B(u?) < ra < C(u2) :
4 <wp < ) I 1 w W 2 " o
1—p2 7 " T 1-p = T
= S oGy 2 <uwi< > D 1 B(p?) <r1 < C(u?) | B(u?) < rz < Cu?) =
wy — 1 wa(l —p?) g
2 4
5 <wy < oo 0<w < ——— D D B(u?) <r1 < C(u?) | B(u?) <rz < Cu?) 5
1—p wa(l —p?) =
4 -
6 —00 < wp <0 - < w1 <0 D D C(p?) <ri < B(p?) | C(u?) < ry < B(u?)
wa (1 — p?) Z
w
@D
=
=
2
—
:
o
e.
=



Table 2: 1 <y < 7. (Increasing (I), Decreasing (D)).

Case Range Sub- Range Behavior Behavior Range Range
of wo case of wy of B(HQ) of C(HQ) of rq of rg
- w2
1 0<wy < 2 (i) T Sw1 <0 D I C(u?) <ry < B(u?) | C(u?) < rz < B(u?)
= — wo —
1+7 I w
() | ——— <w1 < — D D C(u?) <r1 < Bu?) | Cu?) <rs < B(u?)
. wa(l — L ) wy — 1
2 — <wy <2 ——— <wi1 <0 D I C(n?) <71 < B(p?) | C(?) <ry < B(u?)
1+7 w2(14*u )
3 2 < wo < o0 ﬁ <wi <0 I I C(u2) <ry <B(H2) C(u2)<r2<B(u2)
wa(l—7
i 0 < 2 1 1 B(u2) < r1 < C(u?) | Bu2) < ra < C(u2
2 “0 (i) <W1_W2 I (") <rm < C(p o) <rg < C(u%)
4 — S w2 —
1-m (i) 7 <w<2 1 D B(p?) <r1 < C(u?) | B(u?) < rz < C(u?)
w9 —
T
(i) 2Ewn < — D D B(u?) <11 < C(u?) | B(u?) < ry < C(u?)
wa(l—m
[
5 P () 0<w < I 1 B(p?) <r1 < C(?) | B(?) < rz < C(u?)
< — wa —
1—-7 1—7m2 . wWo Z 2 2 2 2
(i) 1Sw1< T I D B(p®) <r1 < C(p") | B(p") <r2 <C(p")
wg — wo(l -7
4
6 —00 < wgy < — 0<wy < — 1 1 B(p?) < r < C(u?) B(p?) < ro < C(u?)
1—@ wo (1 —?)

“(MOVIN) NOLLYVXVTAYYAAO AALVIATADOV AATAIAOIN V

54)
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Case ii: Let 1 < pu < 7. Then Equation (24) is equivalent to either

weg > 0, “’2(%—&2)<W1<0’ (30)
,?21\}23(#2) <ry,ry < uIQHGiI]\lJC(NQ)7
or
wy < 0, O<w1<L, (31)
wo(1 —HQ)
ggﬂ};(](ﬁ) <ry,ry < ;LI’?GHAZB(“Q%

where B(p?) and C(u?) are given in Equation (27). Following an analysis
similar to the one in Case i, its result can be referred to in Table 2. The
derivation of both tables and the result of Equation (29) complete the proof. O

6. Numerical results and discussions

A numerical test was executed to investigate the performance of the MAOR
scheme for a@ = 1.25,1.50,1.75. The tests were carried out using Code::Blocks
for the C++ programming language on a laptop with an Intel(R) Core(TM)
i5-7200U COU @ 2.50GHz and 4.00GB RAM running Windows 10. The pro-
posed scheme was compared with the GS, SOR, MSOR and AOR schemes on
fractional finite difference iterative methods. Throughout the computational
experiments, a tolerance of ¢ = 10710 was utilized for the convergence criteria.

The computational cost is an important factor in developing fast iterative
numerical schemes as it estimates the total number of arithmetic operations to
be implemented per iteration. A higher computational cost would produce a
higher computational time, which indicates slowness in the convergence. Here,
the computational cost for each scheme is measured by computing the total
of arithmetic operations involved, as illustrated in Table 3. From the table,
the term [te corresponds to the number of iterations for their respective c,
and when o = 2.00, Equation (1) will revert back to a second order Poisson
equation [28, 29], which is solved using the second order finite difference method.
Hence the difference in the total number of operations is compared to when
a =1.25,1.50,1.75.
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Table 3: The computational complexities between relaxation schemes (o =
M —1).

Total operations per iteration
Scheme 155150, 1.75 a = 2.00
GS 0(20 +7) = Ite 602 * Ite
SOR | 0%(20 + 11) x Ite 1002 x Ite
MSOR | 02(20 + 11) * Ite 1002 * Ite
AOR | 402(0 +5) * Ite 1602  Ite
MAOR | 2(0?(20 4+ 11) — 1) % Ite | 5(302 — 1) * Ite

In order to validate the superiority of the proposed scheme, all five schemes
were executed to solve the following example problem [12]

0%y 0%

oo e =Dl D +7)
on the solution domain 0 < x <1 and 0 < y <1 and boundary conditions

u(z,0) =0 u(0,y) =

u(z,1) =z u(0,1) = y*

with an exact solution u(z,y) = (zy)®. The error is identified as

) M—1
Error = e Z (Ui — uij)? (32)

1,j=1

in which Uj; ; represents the exact solution and wu;; represents the numerical
solution. The results are shown in Tables 4 and 5 for the above example problem
with several mesh sizes of 10, 20, 40 and 80 and different values of a.

From Tables 4 and 5, the criteria examined are the number of iterations
(Ite), the error which was calculated using Equation (32), the execution time
(in seconds), and the total number of arithmetic operations (Total Ops). These
criteria were used to compare the relaxation schemes executed on several mesh
sizes and different values of a. The results for a = 2.00 are considered bench-
mark results when compared with the other values of a. Through observing
the results, it can be seen that as the mesh size M increases, the proposed
MAOR scheme for fractional Poisson equation produces the least number of
iterations. However, there was a 17 — 65% increase in execution time when
the MAOR scheme was compared to the MSOR scheme, which was supported



728 N.A. Syafiq, M. Othman, N. Senu, F. Ismail

by a higher number of complexities for the MAOR, scheme that utilized four
weighted parameters as compared to the MSOR scheme that utilized only two
weighted parameters. Here, there can be an open problem to reduce the number
of weighted parameters and still produce a high convergence rate.

7. Conclusion

This research has successfully developed a fractional finite difference method
with a shifted Griinwald estimate with the MAOR scheme and has also success-
fully obtained the approximate solution for fractional Poisson equation. The
results in Tables 4 and 5 show that in comparison with previous relaxation
schemes, the MAOR scheme has the least number of iterations; however, there
is a slight increase in execution time due to the higher number of computational
complexities. For future work, this research will be implemented on different
group iterative methods for solving fractional equations, which will be reported
separately.



Table 4: Performance comparison between relaxation schemes at o = 1.25 and o = 1.50.
M Scheme =12 a =150
Tte Parameters Error Time Total Ops Ite Parameters Error Time Total Ops
GS 81 - 1.16E-05 0.016 164,025 116 - 2.46E-06 0.031 234,900
SOR 56 w =1.23 1.16E-05 0.015 131,544 56 w = 1.41 2.46E-06 0.016 131,544
10 MSOR 28 wyr = 1.15, wp, = 1.26 1.16E-05 0.000 65,772 27 wyr = 1.27, wp, = 1.42 2.46E-06 0.000 63,423
AOR 43 0 =159, w=1.12 1.16E-05 0.016 195,048 44 6 =1.58, w=1.31 2.46E-06 0.016 199,584
MAOR 23 0, = 1.15, 6, = 1.31, 1.16E-05 0.015 108,008 25 0, = 1.78, 6, = 1.42, 2.46E-06 0.015 117,400
wr = 1.05, wp, = 1.18 wr = 1.19, w, = 1.38
GS 198 - 2.00E-06 0.500 3,216,510 331 - 4.27TE-07 0.765 5,377,095
SOR 140 w =1.27 2.00E-06 0.234 2,476,460 154 w = 1.51 4.27E-07 0.266 2,724,106
20 MSOR 63 wyr = 1.21, wp = 1.35 2.00E-06 0.109 1,114,407 56 wyr = 1.47, wp = 1.51 4.27E-07 0.094 990,584
AOR 99 0 =198, w=1.23 2.00E-06 0.343 3,430,944 102 0 =193 w=1.34 4.27E-07 0.375 3,534,912
MAOR 47 0, =1.11, 6, = 1.30, 2.00E-06 0.171 1,662,672 48 0, = 1.20, 6, = 1.45, 4.27E-07 0.172 1,698,048
wr = 1.20, wy, = 1.04 wr = 1.45, w = 1.3
GS 472 - 3.36E-07 10.844 61,022,520 915 - 6.98E-08 20.250 118,295,775
SOR 347 w =1.26 3.36E-07 6.109 46,973,043 454 w = 1.51 6.97E-08 7.985 61,457,526
40 MSOR 156 wyr = 1.25, wp = 1.31 3.36E-07 2.750 21,117,564 151 wy = 1.55, wy, = 1.57 6.97E-08 2.656 20,440,719
AOR 257 0 =198, w=1.29 3.36E-07 9.078 68,797,872 281 0 =199, w=1.53 6.97E-08 9.891 75,222,576
MAOR 102 0, = 1.10, 6, = 1.42, 3.36E-07 3.594 27,615,072 92 0, = 1.23, 6, = 1.47, 6.97E-08 3.375 24,907,712
wr = 1.16, wy, = 1.0 wr = 1.52, wy, = 1.15
GS 1100 - 5.51E-08 273.937 1,132,741,500 2486 - 1.09E-08 614.984 2,559,995,790
SOR 845 w=1.23 5.51E-08 167.140 891,246,005 1350 w = 1.46 1.09E-08 266.922 1,423,884,150
80 MSOR 388 wyr = 1.25, wy, = 1.27 5.51E-08 76.657 409,234,852 488 wy = 1.54, wp, = 1.53 1.09E-08 95.828 514,707,752
AOR 628 0 =199, w=1.29 5.51E-08 248.078 1,316,900,928 817 0 =199, w=1.54 1.09E-08 321.891 1,713,229,392
MAOR 231 0, = 1.01, 6, = 1.59, 5.51E-08 91.344 487,284,336 271 0, = 1.10, 6, = 1.46, 1.09E-08 141.937 571,662,576
wr = 1.02, wp = 1.0 wr = 1.56, w, = 1.04
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Table 5: Performance comparison between relaxation schemes at o = 1.75 and « = 2.00.

M Scheme o =175 - o =200 -

Tte Parameters Error Time Total Ops Ite Parameters Error Time Total Ops
GS 153 - 1.82E-06 0.047 309,825 192 - 5.71E-11 0.000 93,312
SOR 50 w = 1.51 1.82E-06 0.016 117,450 42 w=1.53 2.56E-12 0.000 34,020
10 MSOR 30 wr = 1.41, wy = 1.47 1.82E-06 0.016 70,470 37 wr = 1.46, w, = 1.61 1.23E-12 0.000 29,970
AOR 44 6 = 1.55, w = 1.47 1.82E-06 0.016 199,584 42 0 =1.53, w=1.49 4.84E-12 0.000 54,432
MAOR 29 6, = 1.44, 6, = 1.56, 1.82E-06 0.016 136,184 35 0, = 1.57, 1.58E-11 0.000 42,350

wr = 1.26, wp, = 1.4 wr = 1.43, wp = 1.50
GS 500 - 2.33E-07 1.234 8,122,500 712 - 1.08E-10 0.015 1,542,192
SOR 132 w = 1.69 2.33E-07 0.234 2,334,948 84 w =173 4.37E-12 0.000 303,240
20 MSOR 59 wr = 1.59, wp = 1.65 2.33E-07 0.109 1,043,651 74 wr = 1.69, w, = 1.78 2.53E-12 0.000 267,140
AOR 94 6 =1.83, w=1.52 2.33E-07 0.344 3,257,664 83 0 =173 w=172 6.54E-12 0.015 479,408
MAOR 56 6, = 1.37, 0, = 1.67, 2.33E-07 0.188 1,981,056 69 0, = 1.77, 9.04E-12 0.000 373,290

wr = 1.52, w, = 1.6 wr = 1.61, w, = 1.68
GS 1596 - 2.95E-08 35.547 206,338,860 2610 - 2.12E-10 0.094 23,818,860
SOR 376 w=1.78 2.95E-08 6.562 50,898,744 169 w =1.86 1.18E-12 0.016 2,570,490
40 MSOR 121 wr = 1.73, wp = 1.75 2.95E-08 2.110 16,379,649 144 wr = 1.84, w, = 1.87 3.90E-12 0.015 2,190,240
AOR 226 6 =1.99, w=1.62 2.95E-08 7.875 60,499,296 165 0 =1.86, w=1.84 1.65E-12 0.016 4,015,440
MAOR 114 6, = 1.45, 0y, = 1.47, 2.95E-08 4.110 30,863,904 136 0, = 1.81, 5.35E-12 0.015 3,102,160

wr = 1.74, wp, = 1.15 wr = 1.81, wy, = 1.72
GS 5030 - 3.60E-09 1247.360 5,179,717,950 9511 - 4.15E-10 0.906 356,148,906
SOR 1333 w=1.75 3.67E-09 264.562 1,405,953,757 335 w =193 1.49E-12 0.047 20,907,350
20 MSOR 280 wr = 1.79, wp = 1.82 3.69E-09 55.578 295,324,120 281 wr =1.92, wp, = 1.93 9.23E-13 0.031 17,537,210
AOR 753 6 =1.99, w=1.80 3.68E-09 299.469 1,579,022,928 325 0 =193, w=1.92 2.65E-12 0.047 32,453,200
MAOR 209 6, = 1.01, 6, = 1.64, 3.69E-09 83.093 440,876,304 270 0, = 1.89, 2.51E-12 0.031 25,274,700

wr = 1.79, wp, = 1.3 wr = 1.91, w, = 1.84

0€L
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