MULTI-INDEX LE ROY FUNCTIONS OF
MITTAG-LEFFLER-PRABHAKAR TYPE

Abstract

The so-called Special Functions of Fractional Calculus (SF of FC) became important tools of FC, as solutions of fractional order differential and integral equations and systems that model various phenomena from natural and applied sciences, and social events. Among them, recently we have introduced and studied the multi-index analogues of the Mittag-Leffler function that include a very long list of SF of FC.

As a next step, here we introduce multi-index analogues of the Mittag-Leffler-Prabhakar type Le Roy functions (abbr. as multi-MLPR) with 4m-indices. We emphasize on the relations between the multi-index Mittag-Leffler functions, Prabhakar function, Le Roy type functions and multi-index Mittag-Lefler functions of Le Roy type, and also with the hyper-Bessel functions and other SF, appearing as eigenfunctions of fractional analogues of the hyper-Bessel operators of Dimovski.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 5
Year: 2022

DOI: 10.12732/ijam.v35i5.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M.A. Al-Bassam, Yu. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69-88.
  2. [2] P. Delerue, Sur le calcul symbolic à n variables et fonctions hyperbesséliennes (II). Annales Soc. Sci. Bruxelles Ser. 1, 3 (1953), 229-274.
  3. [3] I. Dimovski, Operational calculus for a class of differential operators, Compt. Rend. Acad. Bulg. Sci., 19, No 12 (1966), 1111-1114.
  4. [4] M.M. Dzrbashjan, On the integral transformations generated by the generalized Mittag-Leffler function, Izv. AN Armen. SSR, 13, No 3 (1960), 21-63 (In Russian).
  5. [5] A. Erdélyi, et al. (Ed-s), Higher Transcendental Functions, 1 - 3, McGrawHill, New York-Toronto-London (1953).
  6. [6] R. Garra, E. Orsingher, F. Polito, A note on Hadamard fractional differential equations with varying coefficients and their applications in probability, Mathematics, 6 (2018), Art. 4: 1-10; doi:10.3390/math6010004.
  7. [7] R. Garra, F. Polito, On some operators involving Hadamard derivatives, Integr. Trans. Spec. Func., 24, No 10 (2013), 773-782.
  8. [8] R. Garrappa, S. Rogosin, F. Mainardi, On a generalized three-parameter Wright function of Le Roy type, Fract. Calc. Appl. Anal., 20, No 5 (2017), 1196-1215; https://doi.org/10.1515/fca-2017-0063.
  9. [9] S. Gerhold, Asymptotics for a variant of the Mittag-Leffler function, Integr. Trans. Spec. Func., 23, No 6 (2012), 397-403.
  10. [10] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, 2nd Ed. (2020); DOI: 10.1007/978-3-662-61550-8.
  11. [11] K. Gorska, A. Horzela, R. Garrappa, Some results on the complete monotonicity of Mittag-Leffler functions of Le Roy type, Fract. Calc. Appl. Anal., 22, No 5 (2019), 1284-1306; DOI:10.1515/fca-2019-0068.
  12. [12] A.A. Kilbas, A.A. Koroleva, S.V. Rogosin, Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal., 16, No 2 (2013), 378-404; DOI: 10.2478/s13540-013-0024-9
  13. [13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam etc. (2006).
  14. [14] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Sci. Tech. & J. Wiley, Harlow-N. York (1994).
  15. [15] V. Kiryakova, Multiple Dzrbashjan-Gelfond-Leontiev fractional differintegrals, Recent Advances in Applied Mathematics (Proc. Intern. Workshop RAAM ’96, Kuwait, May 4-7, 1996, 281-294.
  16. [16] V. Kiryakova, Multiindex Mittag-Leffler functions, related GelfondLeontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal., 2, No 4 (1999), 445-462.
  17. [17] V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118, 241-259 (2000); DOI:10.1016/S0377-0427(00)00292-2.
  18. [18] V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Computers and Math. with Appl., 59 (2010), 1885-1895; doi:10.1016/j.camwa.2009.08.025.
  19. [19] V. Kiryakova, A guide to special functions in fractional calculus, Mathematics, 9 (2021), Art. 106: 1-35; DOI:10.3390/math9010106.
  20. [20] V.N. Kolokoltsov, The law of large numbers for quantum stochastic filtering and control of many-particle systems, Theoretical and Mathematical Physics, 208 (2021), 937-957; https://doi.org/10.1134/S0040577921070084.
  21. [21] É. Le Roy, Valéurs asymptotiques de certaines séries procédant suivant les puissances entières et positives d’une variable réelle, Darboux Bull., 24, No 2 (1899), 245-268.
  22. [22] É. Le Roy, Sur les séries divergentes et les fonctions définies par un dévelopement de Taylor, Toulouse Ann. , 2, No 2 (1900), 317-430.
  23. [23] J. Paneva-Konovska, From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence, World Scientific Publ., London (2016); https://doi.org/10.1142/q0026.
  24. [24] J. Paneva-Konovska, Series in Le Roy type functions: Theorems in the complex plane, C. R. Acad. Bulg. Sci., 74, No 3 (2021), 315-323; DOI:10.7546/CRABS.2021.03.02.
  25. [25] J. Paneva-Konovska, Series in Le Roy type functions: A set of results in the complex plane - A survey, Mathematics, 9, No 12 (2021), Art. 1361: 1-15; https://doi.org/10.3390/math9121361.
  26. [26] J. Paneva-Konovska, Prabhakar function of Le Roy type: A set of results in the complex plane, Fract. Calc. Appl. Anal., submitted/accepted 2022; https://www.springer.com/journal/13540.
  27. [27] J. Paneva-Konovska, V. Kiryakova, On the multi-index Mittag-Leffler functions and their Mellin transforms, Intern. J. Appl. Math., 33, No 4 (2020), 549-571; http://dx.doi.org/10.12732/ijam.v33i4.1.
  28. [28] T. Pogány, Integral form of the COM-Poisson renormalization constant, Statistics and Probability Letters, 119 (2016), 144-145.
  29. [29] I. Podlubny, Fractional Differential Equations, Acad. Press, Boston etc. (1999).
  30. [30] T.R. Prabhakar, A singular integral equation with a generalized MittagLeffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  31. [31] A.P. Prudnikov, Y. Brychkov, O.I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Gordon and Breach Sci. Publ., London (1992).
  32. [32] P.E. Ricci, Laguerre-type and applications. A survey, doi:10.3390/math8112054. exponentials, Laguerre Mathematics, 8 (2020), derivatives Art. 2054;
  33. [33] S. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Mathematics, 3, No 2 (2015), 368-381; doi:10.3390/math3020368.
  34. [34] S. Rogosin, M. Dubatovskaya, Multi-parametric Le Roy function, Fract. Calc. Appl. Anal., submitted/accepted 2022; https://www.springer.com/journal/13540.
  35. [35] T. Simon, Remark on a Mittag-Leffler function of Le Roy type, Integr. Transf. Spec. Funct., 33, No 2 (2022), 108-114; doi:10.1080/10652469.2021.1913138.
  36. [36] Ž. Tomovski, K. Mehrez, Some families of generalized Mathieu-type power series, associated probability distributions and related inequalities involving complete monotonicity and log-convexity, Mathematical Inequalities & Applications, 20, No 4 (2017), 973-986; DOI:10.7153/mia-20-61.
  37. [37] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publ., New York (1986).
  38. [38] S. Yakubovich, Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwer Acad. Publ., Dordrecht-Boston London (1994).