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Abstract: In this paper we consider small Lipschitz perturbations for Lips-
chitz maps. We obtain conditions to ensure the permanence of fixed points (sink
and source) for scalar Lipschitz maps without requiring differentiability, in a
step norm weaker than the C''-norm and stronger than the C%-norm. Moreover,
we also propose conditions in order to guarantee the permanence of periodic
points. Additionally, we propose a new definition of Lyapunov exponent for
Lipschitz maps which extends, in a natural way, the definition of Lyapunov
exponent for differentiable maps.
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1. Introduction

The Theory of Dynamical Systems is widely investigated from the point of view
of C! framework, that is, usually the maps considered are diffeomorphisms in
which it provides smooth dynamical systems [7, 8, 9]. The differentiability
condition enables to ensure, under generic assumptions, the permanence of
hyperbolic fixed points [7, 12]. Moreover, the notions of Lyapunov exponents is
essential to characterize chaotic behavior in a neighborhood of a periodic orbit
[1, 6]. In both concepts, the notion of differentiability is required. However,
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dynamical systems generated by Lischitz functions, without differentiability
requirement, have interesting qualitative properties as we can see in the works
2, 3,4, 5, 10, 11, 14].

In this paper we propose a framework of small Lipschitz perturbations for
Lipschitz maps. We show that some results which are valid to discrete standard
smooth dynamical systems also hold when considering a class of Lipschitz maps
instead of considering differentiable ones. Moreover, since a Lipschitz map is

not necessarily differentiable (recall that a Lipschitz map f : R — R satisfies
lf@)—fW)l ¢, for

o
some ¢ € R, ¢ > 0; the existence of the limit is not guaranteed)[ tlﬂs approach
aims to point out some results that lie in the small gap between C° and C!
theory of discrete dynamical systems.

Although the Lipschitz condition does not guarantee differentiability it is
known that it guarantees differentiability almost everywhere with respect to
the Lebesgue measure. This fact is shown in Rademacher’s Theorem.

that following condition: for all z,y € R with x # y, one has

Theorem 1. [13, Thm.3.1] Let Q C R be an open set, and let f: Q@ — R
be a Lipschitz map. Then f is differentiable at almost every point in Q.

Hence, a Lipschitz map which is not differentiable should produce interest-
ing dynamics even if we start at a point of non-differentiability or if a fixed point
is a point in which the differentially fails. This approach has been proposed in
[5] for maps in finite dimension and in [2] for semigroups in infinity dimension.
In order to state our contributions we consider the following simple preliminary
examples. Let f,g,h: R — R maps given by

2 x <0,
flx)y=<2?, 01<z<1, g(x) =2 -2
0.5z +0.5, x>1,
and
0.2z, xz<0,
h(z) =< 2%, 01<z<I1,
21z — 1.1, x> 1.
We can see in Figure 1 that f, g and h has two fixed points. The map g¢ is
smooth while f and h are not differentiable at the two fixed points. Thus, f
and h do not belong to the general theory of smooth dynamical systems, which

implies that the study of both hyperbolicity and permanence of fixed points are
not possible in this context.
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Figure 1: Locally Lipschitz maps f, g, h respectively

Informally, if we move the graphics smoothly we can see that the numbers of
fixed points of f can increase or disappear, so f does not behave well under small
perturbations. Such a bad behavior is not due to the lack of differentiability.
In fact, the map h is not differentiable at the fixed points and, even if we move
its graphic smoothly, we can see that the behavior of h and ¢ are similar, that
is, the fixed points are preserved.

The main aim of this work is to find classes of Lipschitz functions whose
dynamics are preserved under small Lipschitz perturbations. In the next sec-
tion we state precisely what we mean by small Lipschitz perturbation and, in
Theorem 11, we exhibit a class of locally Lipschitz maps which is stable under
this notion. The results are in agreement with the existing works related to per-
manence of hyperbolic fixed points in the C''-topology and Lipschitz dynamical
systems [7, 10].

The second aim of this work is to define Lyapunov exponent for Lipschitz
maps. In Ref. [5], the authors defined sink and source for Lipschitz maps
(without differentiability). In this sense, the fixed point p = 0 of h is a sink and
we can see that (—oo,0)U(0, 1) is its basin of attraction; since h is differentiable
in this set, for each initial data z; € (—o00,0) U (0,1), the Lyapunov number
(and exponent) is well-defined on the orbit of 1. In other words, considering
{z1,79,x3,...} the orbit of x, then z,, — p = 0 when n — co; moreover, it is
well-defined the limit

L(l‘l)=T}ggo(\f’(ﬂfl)l\f’(ﬂfz)l---If'(l‘n)l)% and  h(z1) = In(L(z1)).

Theorem 3.4 in Ref. [1] states that if h is differentiable at p = 0 then the
Lyapunov number L(p) = |h/(p)| equals the limit L(x1). But h is not differen-
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tiable, then such a theory does not apply. Note that we cannot apply Definition
3.2. (of Lyapunov number) presented in [5], where from Rademacher’s Theo-
rem the authors excluded the zero Lebesgue measure set in which A is not
differentiable. We also present an analogous of Theorem 3.4 in Ref. [1].

The paper is arranged as follows. In Section 2 we establish conditions in
order to prove the stability of fixed points. In Section 3 we extend the results
to periodic orbits. In Section 4, we propose a definition of Lyapunov exponent
for locally Lipschitz maps. Finally, in Section 5, a summary of the paper is
presented.

2. Permanence of fixed points

In this section we recall some known concepts on discrete dynamical systems
and after this, we present some new generalizations in the context of Lipschitz
maps.

As usual, a function whose domain is equal to its range is called map. Let
f:A— Abeamapand x € A. The orbit O, of x under f is the set of points
O, = {x, f(z), f*(x),...,}, where f?(x) = f(f(x)) and so on. The point x is
said to be the initial value of the orbit. If there exists a point p in the domain
of f such that f(p) = p then p is called a fized point of f.

Let f : R — R be a map. Recall that f is said to be Lipschitz if there
exists a constant ¢ € R, ¢ > 0 (called Lipschitz constant of f), such that
Va,ye R= |f(x) — f(y)| < c|z — y|, where |- | denotes the absolute value
function on R. In other words, if x # y then w < ¢, i.e., the quotient
is bounded. If Vo,y € R = |f(x) — f(y)| < c|x — y|, then f is called strictly
Lipschitz.

Given x € R, the delta neighborhood Ns(z) of x is defined as Ns(z) = {y €
R: |z —y| <0d}. Let f: R — R be amap and x € R. We say that f is locally
Lipschitz at x if, for each § > 0, there exists an J-neighborhood Nj(x) of x such
that f restricted to Ns(x) is Lipschitz.

In Ref. [5] the authors introduced the concept of reverse Lipschitz map.
This concept was utilized in order to characterize sources for locally Lipschitz
maps (without requiring differentiability).

Definition 2. Let f : R — R be a map. We say that f is reverse
Lipschitz (RL) if there exists a constant » € R, r > 0 (called reverse Lipschitz
constant of f) such that, V z,y € R = |f(x) — f(y)| > 7|z — y|. Similarly,
f is called locally reverse Lipschitz at x if, for each & > 0, there exists an
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d-neighborhood Ns(z) of x such that f restricted to Ns(x) is reverse Lipschitz.

Remark 3. Note that the local Lipschitz constant and reverse constant
depends of the neighborhood of the point, that is, in general these constants
may change from increasing or decreasing J. It is clear that if ¢ is a Lipschitz
constant then also is ¢ > ¢; thus, we always consider the smallest constant
in this neighborhood. An analogous convention is made for reverse Lipschitz
constant.

We next define sink and source for Lipschitz maps. We do not use differ-
entiability and, since we have considering the scalar situation, we do not have
the presence of saddle points which requires differentiability in its definition.

Definition 4. Let f : R — R be a map and p be a fixed point of f.
One says that p is a sink (or attracting fized point) if there exists an § > 0
such that, for all z € Ns(p), klim f¥(x) = p. On the other hand, if all points

—00

sufficiently close to p are repelled from p, then p is called a source. In other
words, p is a source if there exists a delta neighborhood Ng(p) such that, for
every = € Ns(p), © # p, there exists a positive integer k with |f¥(x) — p| > 6.

The first main result of Ref. [5] was to characterize sinks and sources of
locally Lipschitz and reverse Lipschitz maps, respectively, based on Lipschitz
and reverse Lipschitz constants.

Theorem 5. [5, Thm.3.2] Let f : R — R be a map and p € R a fixed
point of f.

1- If f is strictly locally Lipschitz map at p, with Lipschitz constant ¢ < 1,
then p is a sink.

2- If f is locally reverse Lipschitz map at p, with constant r > 1, then p is

a source.

The next result improves Theorem 5, i.e., it shows that sinks and sources
are isolated fixed points which are stable by small Lipschitz perturbations.

Theorem 6. Let f: R — R be a map and p a fixed point of f.

1- If f is locally strictly Lipschitz, with constant ¢ < 1 in a neighborhood of
p, then p is the unique fixed point in this neighborhood, and p is a sink.
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2- If f is reverse Lipschitz with constant r > 1 in a neighborhood of p, then
p is the unique fixed point in such a neighborhood, and p is a source.

Proof. To prove Item 1 note that from Theorem 5 p is a sink; then there
exists a neighborhood Ns(p) of p such that f(Ns(p)) C Ns(p). The result
follows from Banach Contraction Theorem.

To show Item 2, it follows from Theorem 5 that p is a source. If ¢ € Ns(p) is
a source, ¢ # p, then there exists a positive integer kg such that f*(q) ¢ Ns(p),
a contradiction, since q is a fixed point of f. O

We next explain what we mean by Lipschitz perturbation. Let f and g be
locally Lipschitz maps and p € R. We denote

fx)—=fly) g()—g(y)

I f—gll = sup - + sup |f(z)—g(z)]. (1)
Naw) e | Y T=y | sens)
T#Y

Note that if f is continuously differentiable then f is locally Lipschitz and
Eq. (1) is well-defined.

Lemma 7. Let f:R — R beamapandletpeR. If g: R — R is a map
such that || f — gl[n;p) < € (that is, Eq. (1) is well-defined and smaller than )
for some 6 > 0 then, for sufficiently small €, we have:

1- if f is locally Lipschitz with locally Lipschitz constant cf, < 1 in Ns(p)
then g is also locally Lipschitz with locally Lipschitz constant less than
one;

2- if f is locally reverse Lipschitz with locally reverse Lipschitz constant
rrp > 1 in Ns(p) then g is also reverse locally Lipschitz with locally
reverse Lipschitz constant greater than one.

Proof. Let z,y € Ns(p), © # y. From definition of c¢s, we have
l9(z) = g(y)l < lg(x) —g(y) — f(=) + fW)| + [f(z) = (W)l
el —yl+epplr —yl < (e +cpp)lr —yl.

Since cfp < 1, Item (1) follows by taking € <1 — cyp.
To show Item (2), note that

fx) = fly) _ 9(@) —g(y)‘ N ‘f(w) —f(y)‘ _ ‘g(w) —9()
] le—yl |71 2-y T -y

)
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which implies

‘g(fv) —9W)| T

T —Y
Since 7, > 1, it is sufficient to take e sufficiently small and obtains the desired
result. O

Remark 8. Note that if we assume in Lemma 7 that p is a fixed point of
f, asink for instance, then g is locally Lipschitz with locally Lipschitz constant
less than 1 in Ns(p). However, this estimate cannot be transferred to all R;
furthermore, we cannot even ensure that g(Ns(p)) C Ns(p). Therefore, we
cannot establish until now that g has a fixed point (sink) in Ns(p). Fortunately,
we can circumvent this problem assuming sufficient differentiability for f.

Theorem 9. Let f: R — R be a map and p a fixed point of f such that
f is sufficiently differentiable in R and |f’(p)| # 1. If g is a locally Lipschitz
function such that ||f — gln,) < € then for § and e sufficiently small, there
exists a unique fixed point q of g in Ng(p). Moreover, if |f'(p)| < 1 then q is a
sink and if |f'(p)| > 1, q is a source.

Remark 10. Note that we do not require differentiability in g. Therefore,
Theorem 9 extends the permanence of equilibrium points when f and g are
both continuously differentiable and the perturbation is performed w.r.t. the
C'-norm.

Proof. of Theorem 9. We start denoting L = f’(p) and defining the aux-
iliary function h(x) = g(x + p) — p. Note that h(x — p) = g(x) — p; hence,
g(x) = x if only if h(z — p) = = — p. We have:

e —p)=x—peh(z—p)—Llx—p)=z—p—Lx—p)

& (1 L) (e —p)— Lz —p)] =2 — p.
If we denote z = x—p and ¥(2) = (1— L)~ 1[h(2) — Lz], then x is a fixed point of
g if and only if z is a fixed point of 1. In the sequence we prove that, for € and

d sufficiently small, ¢ is a strict contraction in Ng(p). In fact, for |z — p| < 4,
we have

[z —p) <[(1-L)7"
<

| [
I( L) 1[9(96) 9(p) - f()+f( N+ 1= L) g(p) — f)I|
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By the Lipschitz closeness (1), one obtains
(1= L) g(x) = g(p) = (@) + fP)]| + (1 = L) g(p) — f(0)]|
<=L ez —pl+ 1L e <N —L|'es + |1 - L] te.

Since f is differentiable we can take the remainder in the definition of differen-
tiability such that

(1= L) f (@) = fp) = Lz = p))| < |1 = L|'e|lz — p| < [1 — L|7'ed

Thus, taking e < min{|1 — L[6/3, |1 — L|/3}, it follows that [¢(2)| < 4.
We next prove that v is a contraction. We have:
(1= L) g(x) —p— L(z —p) = g(z) +p+ L(z — p)]|
=[(1-L)" 1LC/(J«") 9(z) — L(z — )]
(1 —9(z) — f(z) + f(2)]]
+[(1 = L) f (@) - f(@) — Lz - 2)]l.

Proceeding as above, we obtain

(1= L) g(z) — g(z) = f2) + fF@)]] <1 = LI elw — z];
since f is sufficiently differentiable, for ¢ sufficiently small,
(1= L)' f(2) = f(@) = Lz = )] < |(1 = L)' [f(2) = f(2) = f'(@)(x - 2)]]

(1= L) ' (f' (&) - f'(p) (& — D)
<|(1- L)\fle\x —z|+|(1 - L)|716‘ZL‘ — .

+

Taking € < |1 — L|/3 we obtain
6(2) — ()| < 31— LI o — 3] < [z — 3] = |s — 2]

Hence, there exists a unique ¢ € Ns(p) such that g(q) =
Since f is continuously differentiable, f islocally Lipschitz. Because |f'(p)| <
1, we can take §,A > 0 such that |f'(z)] < A < 1 for all x € Ng(p); from
the Mean Value Theorem, the locally Lipschitz constant of f in Ns(p) equals
SUPge N, (p) |f' ()] < 1. The result now follows from Lemma 7 and Theorem 6.
Analogously we obtain that if |f'(p)| > 1 then, for ¢ sufficiently small, ¢ is
a source for g. O



SMALL LIPSCHITZ PERTURBATION OF SCALAR MAPS... 819

In Theorem 11, removing the differentiability of f, we exhibit a class of
locally Lipschitz maps in which it is possible to ensure the permanence and
stability of fixed points. This class involves maps like h exhibited in Figure 1
and exclude maps such as f.

Theorem 11. Let f: R — R be a map and p a fixed point of f such
that f is locally Lipschitz with constant C' # 1 in the neighborhood Ns(p), for
some § > 0. Assume that f satisfies the inequality

_ 1
(1= f (@) = fly) = Clz —y)| < glz—yl, forallz,y e Ns(p).  (2)
If g is a locally Lipschitz map such that || f — g||n;() < €, then for sufficiently

small €, there exists a unique fixed point q of g in Ns(p) which is a sink if C' < 1
and which is a source if C > 1.

Proof. Utilizing the same argument of the proof of Theorem 9, we obtain

(p) = f(2) + fOI + 1= ) glp) = fD)

<
—~
8
|
E
A
—
—_
|
>
|
—
)
—~
8
~
|
Q

Considering ¢ < min{|1 — C|§/3,|1 — C|/3}, it follows from (2) that ¢ takes
Ns(p) into itself. For z =2 — p and Z = Z — p, we have

() = ¥(2)] < [(1 - O)Hg(x) - 9(z) - f(2) + f(2)]]
+[(1=O) M f (@) = (@) = Lz — D).
If we take € < |1 — C/2, it follows from (2) that ¢ is a strict contraction in

Ns(p), hence g has a unique fixed point ¢ in Ns(p). The stability of g follows
from Lemma 7 and Theorem 6. ]

Remark 12. Note that if f is sufficiently differentiable then the inequality
(2) is always true in a neighborhood of p = f(p). Moreover, if f is locally
Lipschitz, we can rewrite (2) in the form

f@) =) | 1=l

T —y 3 TFY.

It is easy to see that h and ¢ in Figure 1 satisfy the inequality (2) although f
does not.
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Remark 13. We finish this section by observing that Theorem 11 is
applicable to a class of locally Lipschitz maps satisfying (2). This class is not
an optimal class. In fact, the map

0.52, =<0,
22, 0<z<1,
148z — 0.48, x> 1,

has apparently stable equilibria for small Lipschitz perturbation (the graphic
looks like the graph of h) but it does not satisfy (2) in p = 0.

3. Permanence of Periodic Points

In this section we investigate permanence of periodic points. We first recall
some known results concerning such a topic.

Let f: R — R be a map and p € R. Recall that p is a periodic point of
period k (or k-periodic point) if f¥(p) = p and if k is the smallest such a positive
integer. If we cannot ensure that k is the smallest positive integer we say that
p is a preperiodic point. The orbit of p (which consists of k points) is called a
periodic orbit of period k (or k-periodic orbit). We denote the k-periodic orbit
of p by Olg .

If f:R — R is a map and if p is a k-periodic point or a prepriodic
point, then the orbit O’; of p is called a periodic sink if p is a sink of map f*.
Analogously, (’)]Ij is a periodic source if p is a source of f*.

The following result is a version of Theorem 5 for periodic points of (reverse)
Lipschitz maps. The differentiable version can be found in Ref. [1].

Theorem 14. [5, Thm.3.5] Let g = f*: R — R be a map and p € R a
fixed point of g.

1- If g is strictly locally Lipschitz map at p, with Lipschitz constant ¢ < 1,
then (’)5 is a periodic sink.

2- If g is locally reverse Lipschitz map at p, with constant r > 1, then (’)}’; is
a periodic source.

Since a k-periodic point is a fixed point of f* we can apply Theorems 9 and 11
in order to obtain the following results.
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Theorem 15. Let f : R — R be a map and p a fixed point of f*, k > 1,
such that f is continuously differentiable in R and |(f*) (p)| # 1. If g is a locally
Lipschitz function such that || f* — ¢"||n,) < €, then, for § and e sufficiently
small, there exists a unique fixed point q of g* in Nj(p) which is a preperiodic
point of g. Moreover, if |(f*)'(p)| < 1, then the orbit of ¢ by g is a periodic
sink; if |(f*)(p)| > 1, the orbit of q by g is a periodic source.

The Lipschitz version of Theorem 15 without requiring differentiability in
f can be stated as follows.

Theorem 16. Let f : R — R be a map and p a fixed point of f*, k > 1,
such that f* locally Lipschitz in R with locally Lipschitz constant C' # 1 in the
neighborhood Njs(p), for some § > 0. Assume that f* satisfies

I(l—C)_l[fk(fC)—fk(y)—c(fc—y)lSélw—yL for all z,y € Ns(p). (3)

If g is a locally Lipschitz function such that ||f* — ngNg(p) < €, then, for €
sufficiently small, there exists a unique fixed point q of g in Nj(p). Moreover,
if C' < 1 then the orbit of ¢ by ¢ is a periodic sink; if C > 1, the orbit of ¢ by
g is a periodic source.

Example 17 (Small Lipschitz perturbation of a Lipschitz Logistic map).
Let us consider the logistic map g(z) = 3.32(1 — ). Then g has 2-periodic
sink orbit {0.4794,08236} (see [1]), considering four decimal places accuracy.
We can now remove the differentiability of g into 0.4794 and make a small
perturbation. In other words, we define the locally Lipschitz maps

0.152 4+ 0.75, = < 0.4794, 0.152 4+ 0.75 + €, x < 0.4794,
fz)= nd he(z)=
3.3z(1 —z), x > 0.4794, 33x(1 —x) + € x> 0.4794.

Note that f is not differentiable at 0.4794 but {0.4794, 08236} is also a periodic
orbit for f. Furthermore, the product of the locally Lipschitz constant in a
neighborhood of 0.4794 and 0.8236 is less than one; hence, it is a periodic sink.
Moreover, h. is a Lipschitz perturbation of h, thus, for sufficiently small €, it
follows that h. has also a periodic orbit with the same stability of h.
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4. Lyapunov Exponent

In this section we introduce in the literature the Lyapunov number and the
Lyapunov exponent for Lipschitz maps. We only consider the case of maps
defined over R (or over any subset of R), since the procedure for maps on R"”
(or over any subset of R) is quite similar.

We denote by O,, = {x1,22,23,...} an arbitrary orbit with initial point
r1 € R, where 5 = f(z1),23 = f?(21),24 = f3(21),.... Assume that f is a
smooth map on R and z; € R. Recall that the Lyapunov number L(z;) of the
orbit Oy, = {z1,x2,23,...} is defined as L(x;) = nlLrgo(|f/(x1)| | (@)Y,

if the limit exists. The Lyapunov exponent h(x1) is defined as h(x1) = lim
n— o0

(1/n)[In |f (x1)|4- - -+In|f (x,)]], if the limit exists. We say that the orbit O,
is asymptotically periodic if it converges to a periodic orbit (9’;1 for some integer
k>1and y; € R, when n — oo. In other words, there exists a periodic orbit
{y1,92, -y} = {v1, 92, - Yks Y1, Y2, - - -, Yk - - - } such that nl;rgo\xn —yn| =0.

We next define Lyapunov number and Lyapunov exponent for Lipschitz
maps, which are not necessarily differentiable.

Definition 18. Let f: R — R be a locally Lipschitz map and § > 0.
Denote by Cy, 5 the locally Lipschitz constant of f in Ns(x;), i =1,2,.... Then
the d-Lyapunov number Ls(z1) of the orbit Oy, = {x1,z2,x3,...} is defined as

Ls(z1) = (Coys - Cop 5)™, (4)

im
n—o0
if the limit exists.

The 6-Lyapunov exponent hg(z1) is defined as

hs(z1) = nlLI%O(l/n)[ln Coo+ - +InCy, 5, (5)

if the limit exists.

Remark 19. Note that since f is locally Lipschitz, Eq. (4) and (5) are
well-defined for § > 0. Moreover, if f is continuously differentiable with nonzero
derivative, then for all 1 € R, we have

lim Ls(x1) = L(xy).
0—0

The following result is a variant of [1, Theorem 3.4] in the context of Lips-

chitz maps.
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Theorem 20. Let f : R — R be a locally Lipschitz map and § > 0.
Assume that O, = {x1,x2,...} is asymptotically periodic to the periodic orbit
Oy, =A{v1,y2,...}. Then hs(x1) < hs(y1), if both Lyapunov exponent exist.

Proof. Assume that O, = {y1,y2,...} = {y}, i.e., y is a fixed point of f.
Then x, — y as n — oo and

‘ﬂxn) )| _ ‘f(y) - f(Z)‘
P =

lim
n—oo

Scy,ﬁa Z#ffmz#yazeNé(Q)a

where C) ;5 denotes the locally Lipschitz constant of f in Njs(y). Thus, for ns
sufficiently large, we have =), € Ns(y) for k > ns and

flzr) — f(2)

< Cy,&a
T — 2

which implies C,, 5 < Cy 5 for k > ns; hence hs(x1) < hs(y).

If £ > 1, we know that y; is a fixed point of f* (which is also locally
Lipschitz) and O,, is asymptotically periodic under f* to Oy,. Applying the
same reasoning above to z1 and f*, it follows that h¥(z1) < h¥(y1). The result
follows by observing that hs(x1) = $h¥(x1). O

Example 21. Let us consider the locally Lipschitz maps

@) 0.15x + 0.75, x < 0.4794,
xTr) =
3.3z(1 — z), z > 0.4794.

We compute the 6-Lyapunov exponent of the periodic orbit {y1,y2} = {0.4794,
08236}. It is easy to see that for each § > 0,

Cyr5Cyns < 0.15 - 2.1357 - 26, (6)

Since this orbit is a sink, every orbit Oy, = {1, 2, ...} which converges asymp-
totically to {x1,z2} have the é-Lyapunov exponent bounded by the inequality

(6).

5. Final Remarks

We have obtained conditions to ensure the permanence of fixed points (sink and
source) for scalar Lipschitz maps without requiring differentiability in a step
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norm weaker than the C'-norm and stronger than the C’-norm. Moreover,
we also derived conditions to guarantee the permanence of periodic points.
We have also proposed a new definition of Lyapunov exponent for Lipschitz
maps which extends, in a natural way, the definition of Lyapunov exponent for
differentiable maps. Dynamical systems based on Lipschitz maps seem to be
an interesting area of research due to the fact that it is not necessary to require
differentiability of a map, which is a strong condition to be satisfied.

1]

2]
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