International Journal of Applied Mathematics

Volume 35 No. 6 2022, 867-874

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v35i6.5

MODULES WHOSE PRIMARY-LIKE SUBMODULES ARE INTERSECTION OF MAXIMAL SUBMODULES

Fatemeh Rashedi

 $\begin{array}{c} {\rm Department~of~Mathematics} \\ {\rm Technical~and~Vocational~University~(TVU)} \\ {\rm Tehran,~IRAN} \end{array}$

Abstract: Let R be a commutative ring with identity and M be an unitary R-module. A ring R in which every prime ideal is an intersection of maximal ideals is called Hilbert (or Jacobson) ring. We propose to define modules by the property that primary-like submodules are intersections of maximal submodules which are said to be \mathcal{PH} modules. It is shown that every co-semisimple module is a \mathcal{PH} module. Also, it is shown that an R-module M is a \mathcal{PH} module if and only if every non-maximal primary-like submodule of M is an intersection of properly larger primary-like submodules.

AMS Subject Classification: 13C10, 13C13

Key Words: primary-like submodule, Hilbert module, \mathcal{PH} module

1. Introduction

In this paper, all rings are commutative with identity and all modules are unitary. Let N be a submodule of M. Then (N:M) denote the ideal $\{r \in R \mid rM \subseteq N\}$. A proper submodule P of an R-module M is said to be p-prime submodule, if $rm \in P$ for $r \in R$ and $m \in M$, then either $m \in P$ or $r \in p := (P:M)$. The set of all prime submodules of M is denoted by Spec(M) [13]. Note that the Spec(M) may be empty for some module M. Let N be a submodule of M. Then the intersection of all prime submodules of M containing N is called the radical of N and denoted by radN. If there is no prime submodule containing N, then we define radN = M. A proper submodule radN and radN is called the radical of radN and radN is called the radical of radN and radN.

Received: July 12, 2022 © 2022 Academic Publications

ule Q of M is said to be p-primary-like if $rm \in Q$ implies $r \in p := (Q : M)$ or $m \in radQ$ [3]. Let N be a submodule of a nonzero R-module M. We say that N satisfies the primeful property, if for each prime ideal p of R with $(N:M) \subseteq p$, there exists a prime submodule P of M containing N such that (P:M)=p. If N is a submodule of M satisfying the primeful property, then $(radN: M) = \sqrt{(N:M)}$ [11, Proposition 5.3]. An R-module M is called primeful, if either M=0 or the zero submodule of M satisfies the primeful property. For instance, finitely generated modules, projective modules over integral domains, and vector spaces are primeful [11]. The primary-like spectrum $Spec_L(M)$ for an R-module M is defined to be the set of all primary-like submodules of M satisfying the primeful property [4]. If $Q \in Spec_L(M)$, since Q satisfies the primeful property, then there exists a maximal ideal m of R and a prime submodule P of M containing Q such that (P:M)=m. Then $P \in V(Q)$, and so $Q \neq M$. In particular, radQ satisfies the primeful property. Moreover, it is proved that if $Q \in Spec_L(M)$, then $p := \sqrt{(Q:M)}$ is a prime ideal of R [4]. If R is a commutative ring and each prime ideal of R is an intersection of maximal ideals, then R is called a Hilbert ring. If R is a Hilbert ring, then the polynomial ring $R[x_1,\ldots,x_2]$ is also a Hilbert ring [2, 5, 6, 7]. Hilbert rings were extended to noncommutative rings in [9].

A generalization of commutative Hilbert rings to modules was extended in [1] and [12]. In this paper, we extend the notion of commutative Hilbert rings to modules via primary-like submodules and study some properties of \mathcal{PH} modules. An R-module M is a \mathcal{PH} module if every primary-like submodule of M is an intersection of maximal submodules. It is clear that any \mathcal{PH} module is a Hilbert module. We show that if $\bigoplus_{i \in I} M_i$ is a \mathcal{PH} module, then each M_i is a \mathcal{PH} module (Corollary 6). Also, it is shown that M is a \mathcal{PH} module if and only if every non-maximal primary-like submodule of M is an intersection of properly larger primary-like submodules (Theorem 7). Finally, it is shown that if R be a domain and M be a \mathcal{PH} module over R such that every homomorphic image M/N of M is a torsion-free R-module, then N is a \mathcal{PH} module (Theorem 12).

2. On \mathcal{PH} modules

Let M be an R-module. Since each prime submodule of M is a primary-like submodule, each \mathcal{PH} module is a Hilbert module. The following example shows that the converse of this fact is not true in general.

Example 1. Let $M = \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}_p$. Then M is not a multiplication \mathbb{Z} -module and $Spec(M) = pM = \mathbb{Z}(p^{\infty}) \oplus 0$ [13, Example 3.7]. By an easy verification for submodule $N = 0 \oplus \mathbb{Z}_p$ of M, we have radN = M and (N : M) = 0, and so N is a primary-like submodule of M that is not a prime submodule of M. It is easy to see that M is a Hilbert \mathbb{Z} -module, but it is not a \mathcal{PH} module.

Let M and M' be R-modules. Then M is called M'-injective if for any submodule N' of M' each homomorphism $N' \longrightarrow M$ can be extended to $M' \longrightarrow M$. An R-module M is called co-semisimple if every simple module is M-injective [14, Chap. 4, Sec. 23].

Proposition 2. Let M be a co-semisimple R-module. Then M is a \mathcal{PH} module.

Proof. Suppose that M is a co-semisimple R-module. Hence every proper submodule of M is an intersection of maximal submodules by [14, Proposition 23.1]. Therefore M is a \mathcal{PH} module.

We recall that an R-module M is called semisimple if M is a direct sum of simple submodules [14].

Proposition 3. Let M be a semisimple R-module. Then M is a \mathcal{PH} module.

Proof. Suppose that M is a semisimple R-module. Hence M is co-semisimple, by [14, Proposition 23.1]. Therefore M is a \mathcal{PH} module by Proposition 2. \square

Proposition 4. Any homomorphic image of a \mathcal{PH} module is a \mathcal{PH} module.

Proof. Since a proper submodule Q of M with $N \subseteq Q$ is a primary-like (resp., maximal) submodule of M if and only if Q/N is a primay-like (resp., maximal) submodule of the factor module M/N [3, Corollary 3.5], the assertion is clear.

Corollary 5. Let M be an R-module. Then the following statements are equivalent.

- (1) M is a \mathcal{PH} module.
- (2) If N is a submodule of M, then M/N is a \mathcal{PH} module.
- (3) If N is a minimal primary-like submodule of M, then M/N is a \mathcal{PH} module.
 - *Proof.* (1) \Longrightarrow (2) follows from Proposition 4.
- $(2) \Longrightarrow (3)$ is clear.
- (3) \Longrightarrow (1) Assume that Q is a primary-like submodule of M and $\{Q_i\}_{i\in I}$ is a chain of primary-like submodules of M. Thus $\bigcap_{i\in I}Q_i$ is a primary-like submodule. Therefore Q contains a minimal primary-like submodule Q_0 of M, by Zorn's lemma. Thus Q/Q_0 is an intersection of maximal submodules of M/Q_0 . Then M is a \mathcal{PH} module.

Corollary 6. Let $\{M_i\}_{i\in I}$ be a family of R-modules and $\bigoplus_{i\in I} M_i$ be a \mathcal{PH} module. Then every M_i is a \mathcal{PH} module.

Proof. Follows from Proposition 4.

Theorem 7. An R-module M is a \mathcal{PH} module if and only if every non-maximal primary-like submodule of M is an intersection of properly larger primary-like submodules.

Proof. Suppose that M is a \mathcal{PH} module. Since any maximal submodule is primary-like, the assertion holds. Conversely, assume that N is a primary-like submodule which is not a maximal submodule and $x \in M \setminus N$. Suppose that $\sum = \{Q \in Spec_L(M) \mid N \subseteq Q, x \notin Q\}$. Since $N \in \sum, \sum \neq \emptyset$. Hence \sum has a maximal element, by Zorn's Lemma. Let Q' be a maximal element in \sum . Then Q' must be a maximal submodule. If Q' is not a maximal submodule, Q' is the intersection of properly larger primary-like submodules. Since Q' is maximal element in \sum , all properly larger primary-like submodules containing Q' must contain x, and so $x \in Q'$, a contradiction. Thus Q' is a maximal submodule. Hence N is the intersection of all maximal submodules of M containing N. \square

Lemma 8. Let M be an R-module and let I be an ideal of R such that $I \subseteq Ann(M)$. Then M is a \mathcal{PH} as an R-module if and only if M is a \mathcal{PH} as an R/I-module.

Proof. It is clear.

Proposition 9. Let M be an R-module and $Q \in Spec_L(M)$. Then (Q:M) is a primary ideal of R, and so $\sqrt{(Q:M)}$ is a prime ideal of R.

Proof. Suppose that $rs \in (Q:M)$ and $r \notin (Q:M)$ for some $r, s \in R$. Hence $s \in (\operatorname{rad} Q:M)$, since Q is a primary-like submodule of M. Now, $s \in \sqrt{(Q:M)}$, by [11, Proposition 5.3].

Proposition 10. Let M be an R-module. Consider the following statements:

- (1) M is a \mathcal{PH} R-module.
- (2) M/(Nil(R)M) is a \mathcal{PH} R-module.
- (3) M/(Nil(R)M) is a \mathcal{PH} R/Nil(R)-module.

Then $(1) \Longrightarrow (2) \Longleftrightarrow (3)$. Furtheremore, if all primary-like submodules of M satisfy the primeful property and the ideal P := (Q : M) is a radical ideal of R for each $Q \in Spec_L(M)$, then the above statements are equivalent.

Proof. $(1) \Longrightarrow (2)$ It follows from Corollary 4.

- $(2) \iff (3)$ It follows from Lemma 8.
- (3) \Longrightarrow (1) Assume that $Q \in Spec_L(M)$ and the ideal P := (Q : M) is a radical ideal of R. Then (Q : M) = P is a prime ideal of R by Proposition 9. Therefore $PM \subseteq Q$. So $Nil(R)M \subseteq Q$. Since Q/Nil(R)M is a primary-like submodule of M/Nil(R)M, $Q/Nil(R)M = \bigcap_{i \in I} (M_i/Nil(R)M)$ where each $M_i/Nil(R)M$ is a maximal submodule of M/Nil(R)M. Hence $Q = \bigcap_{i \in I} M_i$, and so M is a \mathcal{PH} module..

Let M be an R-module. Then $J_R(M)$ is the intersection of all maximal submodules of M.

Proposition 11. Let M be an R-module. Then the following statements are equivalent:

- (1) M is a \mathcal{PH} module as an R-module.
- (2) If all primary-like submodules of M satisfy the primeful property and the ideal P := (Q : M) is a radical ideal for each $Q \in Spec_L(M)$, then M/Q is a \mathcal{PH} module as an R/P-module for every $Q \in Spec_L(M)$.

(3) If all primary-like submodules of M satisfying the primeful property and the ideal P := (Q : M) is a radical ideal for each $Q \in Spec_L(M)$, then $J_R(M/Q) = 0$ for every $Q \in Spec_L(M)$.

Proof. (1) \Longrightarrow (2) Let $Q \in Spec_L(M)$ and let P := (Q : M). Then by Corollary 5, M/Q is a \mathcal{PH} module. Since P = Ann(M/Q), the assertion holds, by Lemma 8.

(2) \Longrightarrow (3) Let $Q \in Spec_L(M)$ such that P = (Q : M). Since the zero submodule of the R/P-module M/Q is a primary-like submodule, $J_{R/P}(M/Q) = 0$. Since $J_{R/P}(M/Q) = J_R(M/Q)$, $J_R(M/Q) = 0$.

 $(3) \Longrightarrow (1)$ is obvious.

Theorem 12. Let R be an integral domain and M be a \mathcal{PH} module as an R-module. If N is a submodule of M such that M/N is torsion-free, then N is also a \mathcal{PH} module.

Proof. Suppose that Q is a primary-like submodule of N. Suppose that $rm \in Q$ for some $r \in R$ and $m \in M$. If $m \in N$, then since Q is a primary-like submodule of N, $r \in (Q:N)$ or $m \in radQ$. Suppose that $x \notin N$. Since M/N is torsion-free and $m \notin N$, r = 0. Therefore $r \in (Q:M)$, and so Q is a primary-like submodule of M. Since M is a \mathcal{PH} module, there exists a family of maximal submodule $\{M_i\}_{i \in I}$ of M such that $Q = \bigcap_{i \in I} M_i$. Let $Q_i := M_i \cap N$ for each $i \in I$. Since Q is a submodule of N, it is easy to see that $Q = \bigcap_{i \in I} Q_i$. Now, assume that $x \in N \setminus Q_i$. We will show that $\langle Q_i, x \rangle = N$. Since $x \notin Q_i$, $x \notin M_i$ and M_i is a maximal submodule of M, $\langle M_i, x \rangle = M$. Let $y \in N$. Since $\langle M_i, x \rangle = M$, $y = x_i + rx$ for some $x_i \in M_i$ and $r \in R$. Since $y \in N$ and $x \in N$, $x_i \in N$. Thus $x_i \in Q_i$, and so $y \in \langle Q_i, x \rangle$. Therefore Q_i is a maximal submodule of N for each i.

Recall that a submodule N of an R-module M is called pure if $IN = N \cap IM$, for every ideal I of R. The torsion submodule of a module M over an integral domain R, denoted by T(M), is the submodule $\{m \in M : Ann(m) \neq 0\}$ of M. An R-module M is said to be torsion (resp. torsion-free), if T(M) = M (resp. T(M) = 0).

Corollary 13. Let R be an integral domain and M be a \mathcal{PH} module. Then the following statements hold:

(1) T(M) is a \mathcal{PH} module.

(2) If M is torsion-free and N is a pure submodule of M, then N is also a \mathcal{PH} module.

Proof. (1) It is clear by Theorem 12.

(2) Assume that M is torsion-free and N is a pure submodule of M. Suppose that $x \in M \setminus N$ and $rx \in N$. Since N is pure, $rM \cap N = rN$. Thus $rx \in rN$, and so there is $y \in N$ such that rx = ry. But then r(x - y) = 0. Since $x \notin N$, $x - y \neq 0$. As M is torsion-free, we conclude that r = 0. Therefore M/N is a torsion-free R-module, and so the assertion holds by Theorem 12.

Lemma 14. Let M be an R-module and $Q \in Spec_L(M)$. Then $\operatorname{rad} Q \in Spec(M)$ if and only if $T(\frac{M}{\operatorname{rad} Q}) = 0$ as an $\frac{R}{\sqrt{(Q:M)}}$ -module.

Proof. Suppose $Q \in Spec_L(M)$. Hence by Proposition 9,

$$\sqrt{(Q:M)} = (\operatorname{rad} Q:M)$$

is a prime ideal of R, and so the proof follows from [8, Lemma 1].

Proposition 15. Let M be a module over a Dedekind domain R and $Q \in Spec_L(M)$ such that $M = radQ \oplus N$ for some torsion-free submodule N of M. Then rad Q is a prime submodule of M.

Proof. Suppose that $M = \operatorname{rad} Q \bigoplus N$ for some torsion-free submodule N of M. Then $\frac{M}{\operatorname{rad} Q} \cong N$, and so $\frac{M}{\operatorname{rad} Q}$ is torsion-free. Hence $\operatorname{rad} Q$ a prime submodule of M, by [8, Lemma 1].

Proposition 16. Let R be a Dedekind domain which freely generated by a set of indeterminates $\{x_i\}$ over a division ring K and M be a finitely generated R-module. Let $Q \in Spec_L(M)$ such that $M = radQ \oplus N$ for some torsion-free submodule N of M. Then radQ is an intersection of maximal submodules.

Proof. Since R freely generated by a set of indeterminates $\{x_i\}$ over a division ring k, J(R)=(0) by [10, Corollary 4.16]. Hence R is a Hilbert ring. Since M is a finitely generated R-module, M is a Hilbert module, by [12, Proposition 2.9]. Since R is a Dedekind domain and $Q \in Spec_L(M)$ such that $M=radQ \oplus N$ for some torsion-free submodule N of M, radQ is a prime submodule of M by Proposition 15. Therefore radQ is an intersection of maximal submodules.

References

- [1] M. Arabi-Kakavand and M. Behboodi, Modules whose classical prime submodules are intersection of maximal submodules, *Bull. Korean, Math. Soc.*, **51** (2014), 253-266.
- [2] S.A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, *Ann. Mat. Pura Appl.*, **71** (1966), 61-72.
- [3] H. Fazaeli Moghimi and F. Rashedi, Zariski-like spaces of certain modules, Journal of Algebraic Systems, 1 (2013), 101-115.
- [4] H. Fazaeli Moghimi and F. Rashedi, Primary-like submodules and a scheme over the primary-like spectrum of modules, *Miskolc Mathematical Notes*, **18** (2017), 961-974.
- [5] M. Ferrero and M.M. Parmenter, A note on Jacobson rings and polynomial rings, *Proc. Amer. Math. Soc.*, **105** (1989), 281-286.
- [6] K. Fujita and S. Itoh, A note on Noetherian Hilbert rings, Hiroshima Math. J., 10 (1980), 153-161.
- [7] O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, *Math. Z.*, **54** (1951), 136-140.
- [8] J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, *Comm. Algebra*, **20** (1992), 3593-3602.
- [9] A. Kaucikas and R. Wisbauer, Noncommutative Hilbert rings, *J. Algebra Appl.*, **3** (2004), 437-443.
- [10] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York-Berlin-Heidelberg (1991).
- [11] C.P. Lu, A module whose prime spectrum has the surjective natural map, *Houston J. Math.*, **33** (2007), 127-143.
- [12] M. Maani Shirazi and H. Sharif, Hilbert modules, Int. J. Pure Appl. Math., 20 (2005), 1-7.
- [13] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, *Comm. Algebra*, **25** (1997), 79-103.
- [14] R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading (1991).