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Abstract: In this paper (strictly) locally ρ-K-connected, locally (naturally)
quasi ρ-K-connected and (strictly) locally pseudo ρ-K-connected functions are
defined for a vector optimization problem over cones. Involving these functions
necessary and sufficient optimality conditions are obtained for an approximate
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Mond-Weir type duals are formulated and duality results are established.
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1. Introduction

Various generalizations of convex functions have appeared in literature. Among
them we recall the class of arcwise connected functions introduced by Ortega
and Rheinboldt [10] defined on arc wise connected sets. Kaul et al. [6] defined
locally connected sets by reducing the width of the arc part. These sets include
arc wise connected sets [1] and locally star shaped sets [2]. The authors then
defined locally connected functions, locally Q-connected on a locally connected
set. These functions include semi-locally convex functions and semi-locally
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quasiconvex functions defined earlier by Kaul and Kaur [8] as special cases.
Kaul and Lyall [7] defined the directional derivative (with respect to an arc) of
a real valued function and called it the right differential, at a point of a locally
connected set. They also defined locally P -connected functions in terms of
their right differentials and obtained a number of sufficient optimality criteria
for a non-linear programming problem involving these functions. Lyall et al. [9]
further extended these results to the multiple objective programming. Recently,
Suneja et al. [18] extended these results to the vector optimization problem
over cones with generalized cone locally connected functions. Necessary and
sufficient optimality conditions and Wolfe and Mond-Weir type duality results
are obtained for a weak quasi efficient solution involving these functions. Vial
[19] defined ρ-convex functions. Jeyakumar [4, 5] defined ρ-pseudo convex and
ρ-quasi convex functions. Later on Preda and Niculescu [11, 12] defined ρ-
locally arc-wise connected, ρ-locally Q-connected and ρ-locally P -connected
functions and gave necessary and sufficient optimality conditions and Wolfe and
Mond-Weir type duality results for minimax and non-linear multiple objective
programming problem. After that authors like Stancu-Minasian [13, 14, 15],
Stancu-Minasian and Andreea Madalina Stancu [17] obtained these results for
non-linear programming problems involving these functions.

2. Definitions and preliminaries

Let S ⊆ Rn be a nonempty set and K ⊆ Rm be closed convex pointed cone
with non-empty interior. The positive dual cone K∗ of K is given by

K∗ = {y∗ ∈ Rm : xT y∗ ≥ 0, for all x ∈ K}.

Also, Flores-Bezan et al. [3] have shown that k ∈ intK ⇔ λTk > 0, for all
λ ∈ K∗ \ {0}.

Definition 2.1 ([6]). A set S ⊆ Rn is said to be locally connected if for
each x, x∗ ∈ S there exists a maximum positive number a(x∗, x) ≤ 1 and a
vector valued function Hx∗,x : [0, 1] → S such that

Hx∗,x(λ) ∈ S, 0 < λ < a(x∗, x), (1)

Hx∗,x is continuous in the interval ]0, a(x∗, x)[ and

Hx∗,x(0) = x∗, Hx∗,x(1) = x . (2)

Let S ⊆ Rn be a locally connected set with respect to the are Hx∗,x : [0, 1] → S
satisfying (1) and (2). f : S → Rmbe a vector valued function.



APPROXIMATE SOLUTIONS AND VECTOR OPTIMIZATION... 37

Definition 2.2 ([7]). The function f is said to have a right derivative (or
right differential) at x∗ ∈ S with respect to Hx∗,x if

lim
λ→0+

f(Hx∗,x(λ)) − f(x∗)

λ

exists. This limit is denoted by (df)+(Hx∗,x(0
+)). If lim

λ→0+

Hx∗,x(λ)−x
∗

λ exists

then it is denoted by dH+
x∗,x(0), and is called directional derivative of Hx∗,x at

λ = 0.

Generalizing the concept of ρ-locally arc-wise connected function [16], we
define new notions of locally ρ-K-connected function and its generalizations.
For this purpose we consider ρ ∈ Rm, d : S × S → R+, f : S → Rm and a
closed convex pointed cone K in Rm having non-empty interior. We say that
f is

(i) locally ρ-K-connected (ρKLCN) at x∗ ∈ S with respect to Hx∗,x if for
every x ∈ S

f(x)− f(x∗)− (df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ K.

If ρ = 0 then the above definition reduces to locally K-connected function.

(ii) Strictly locally ρ-K-connected (ρKSLCN) at x∗ ∈ S with respect to Hx∗,x

if for every x ∈ S, x 6= x∗

f(x)− f(x∗)− (df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ intK.

(iii) locally quasi ρ-K-connected (ρKLQCN) at x∗ ∈ S with respect to Hx∗,x

if for every x ∈ S,

f(x)− f(x∗) /∈ intK ⇒ −(df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ K.

(iv) locally naturally quasi ρ-K-connected (ρKLNQCN) at x∗ ∈ S with re-
spect to Hx∗,x if for every x ∈ S,

−[f(x)− f(x∗)] ∈ K ⇒ −(df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ K.

(v) locally pseudo ρ-K-connected (ρKLPCN) at x∗ ∈ S with respect to Hx∗,x

if for every x ∈ S,

f(x∗)− f(x) ∈ intK ⇒ −(df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ intK.
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(vi) strictly locally pseudo ρ-K-connected (ρKSPLCN) at x∗ ∈ S with respect
to Hx∗,x if for every x ∈ S

−[f(x)− f(x∗)] ∈ K ⇒ −(df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ intK.

If f is ρKLCN at each x∗ ∈ S, then f is said to be ρKLCN on S. Same is
applied for its generalizations.

Theorem 2.3. If f is locally ρ-K-connected at x∗ ∈ S with respect to the
arc Hx∗,x, then f is locally naturally quasi ρ-K-connected at x∗ with respect
to the same arc Hx∗,x.

Proof. Let f be locally ρ-K-connected at x∗ ∈ S with respect to the arc
Hx∗,x, then for every x ∈ S

f(x)− f(x∗)− (df)+(Hx∗,x)− ρd(x∗, x) ∈ K. (3)

Let

−[f(x)− f(x∗)] ∈ K . (4)

Adding (3) and (4), we get

−(df)+(Hx∗,x)− ρd(x∗, x) ∈ K.

Hence f is locally naturally quasi ρ-K-connected at x∗ with respect to the same
arc Hx∗,x.

The converse of the above theorem may not hold as can be seen from the
following example.

Example 2.4. Let S = {(x1, x2) : x
2
1 + x22 ≥ 1, x1 6= 2x2, x1 > 0, x2 > 0}

and Hx∗,x(λ) = ({(1 − λ)x∗
2

1 + λx21}
1/2, {(1− λ)x∗

2

2 + λx22}
1/2).

Then S is a locally connected set with respect to the arc given by Hx∗,x(λ).

Let x∗ = (1, 1) and K = {(x1, x2) : −x1 ≤ x2, x2 ≥ 0}. Let us define
f : S → R2 as

f(x1, x2) =

{

(−x21x
2
2, x

2
1 − x22), if x1 > 1, x2 > 1,

(−1, 0), otherwise.
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Let ρ = (0,−1) and

d(x∗, x) =































1
x1+x2

, if x1 > 1, x2 > 1,

(x1 + x∗1)
2 + (x2 + x∗2)

2, if x1 ≤ 1, x2 ≤ 1 and

(x1 + x∗1)
2 + (x2 + x∗2)

2 ≤ 1,
1

(x1+x∗

1
)2+(x2+x∗

2
)2
, if x1 ≤ 1, x2 ≤ 1 and

(x1 + x∗1)
2 + (x2 + x∗2)

2 > 1.

Now

(df)+(Hx∗,x(0
+)) =











(2− x21 − x22, x
2
1 − x22), if both the components

of Hx∗,x(λ) > 1,

(0, 0), otherwise.

f is locally naturally quasi ρ-K-connected at x∗, because f(x)− f(x∗) ∈ −K.
This implies 1− x21x

2
2 ≤ x22 − x21 and x22 − x21 ≥ 0. So

−(df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ K.

But f is not locally ρ-K-connected at x∗, because for x = (2, 2)

f(x)− f(x∗)− (df)+(Hx∗,x(0
+))− ρd(x∗, x) = (−9,

1

4
) /∈ K.

Theorem 2.5. If f is locally quasi ρ-K-connected at x∗ ∈ S with respect
to the arc Hx∗,x then f is locally naturally quasi ρ-K-connected with respect
to the same arc Hx∗,x.

The converse of the above theorem may not hold as can be seen by the
following example.

Example 2.6. Let S be a locally connected set with respect to the arc
Hx∗,x(λ) as defined in Example 2.4.

Let x∗ = (1, 1) and K = {(x1, x2) : x1 ≤ 0, x2 ≤ x1}.
Let f : S → R2 be defined as

f(x1, x2) =

{

(

1
x2
1

, 1
x2
2

)

, if x1 > 1, x2 > 1,

(1, 1), otherwise.

Let ρ = (1, 1) and d(x∗, x) is defined as in Example 2.4.
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Now

(df)+(Hx∗,x(0
+)) =











(1− x21, 1− x22), if both the components

of Hx∗,x(λ) > 1,

(0, 0), otherwise.

f is locally naturally quasi ρ-K-connected at x∗ because

f(x)− f(x∗) ∈ −K.

This implies

1− x21 ≥ 0 and x21 ≥ x22.

So

−(df)+(Hx∗,x(0
+))− ρd(x∗, x) ∈ K.

But f is not locally quasi ρ-K-connected at x∗, because for x = (2, 2)

f(x)− f(x∗) =

(

−3

4
,
−3

4

)

6∈ intK.

But

−(df)+(Hx∗,x(0
+))− ρd(x∗, x) =

(

11

4
,
11

4

)

6∈ K.

Remark 2.1. The following diagram illustrates the relation between
ρKLCN, ρKLQCN and ρKLNQCN:

ρKLCN →
6←

ρKLNQCN ←
6→

ρKLQCN

3. Optimality conditions

Consider the following vector optimization problem:

(VP) K-minimize f(x)

subject to − g(x) ∈ Q,

where f : S → Rm, g : S → Rp, S ⊆ Rn is a locally connected set such that
for each x, x∗ ∈ S, there exists a vector valued function Hx∗,x(λ) satisfying the



APPROXIMATE SOLUTIONS AND VECTOR OPTIMIZATION... 41

conditions (1) and (2) and the right differentials of f and g exist at x∗ with
respect to the same arc Hx∗,x.

Let K ⊆ Rm and Q ⊆ Rp be closed convex cones with nonempty interiors
and X0 = {x ∈ S : −g(x) ∈ Q} be the set of all feasible solutions of (VP).

Definition 3.1. Let ε ∈ R, ε ≥ 0 and e ∈ K \ {0}. x∗ ∈ X0 is said to be
εe-quasi efficient solution of (VP) if

f(x)− f(x∗) /∈ −K \ {0} − ε‖x− x∗‖e, for all x ∈ X0,

and a weak εe-quasi efficient solution of (VP) if

f(x)− f(x∗) /∈ − intK − ε‖x− x∗‖e, for all x ∈ X0.

When ε = 0, εe-quasi efficient solution (weak εe-quasi efficient solution) of (VP)
will coincide with efficient solution (weak efficient solution) of (VP).

We now give the generalized Slater’s type cone constraint qualification
which will be used in obtaining the necessary optimality conditions.

Definition 3.2. The function g is said to satisfy generalized Slater’s type
cone constraint qualification at x∗ if g is locally σ-Q-connected at x∗ and there
exists x̂ ∈ S such that

−g(x̂) + σd(x∗, x̂) ∈ intQ.

Theorem 3.3 ([17]). Suppose that x∗ ∈ X0 be a weak εe-quasi efficient
solution of (VP). If (df)+(Hx∗,x(0

+))+ε‖dH+
x∗,x(0)‖e and (dg)+(Hx∗,x(0

+)) are
K-subconvexlike and Q-subconvexlike functions of x respectively with respect
to the same arc Hx∗,x. Then there exist α ∈ K∗, β ∈ Q∗ not both zero such
that

αT (df)+(Hx∗,x(0
+))+βT (dg)+(Hx∗,x(0

+))+ε‖dHT
x∗,x(0)‖α

T e≥0,

for all x∈S. (5)

βT g(x∗) = 0 . (6)

Theorem 3.4. Suppose that the hypothesis of Theorem 3.3 holds. Then
there exist α ∈ K∗, β ∈ Q∗ (not both zero) such that conditions (5) and (6)
hold. If g satisfies the generalized Slater’s type cone constraint qualification at
x∗ then α 6= 0.
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Proof. If possible, let α = 0. Then form (5), we get

βT (dg)+(Hx∗,x(0
+)) ≥ 0, for all x ∈ S. (7)

Since g satisfies the generalized Slater’s type cone constraint qualification at
x∗, therefore

g(x)− g(x∗)− (dg)+(Hx∗,x(0
+))− σd(x∗, x) ∈ Q, for all x ∈ S

and there exist x̂ ∈ S such that

−g(x̂) + σd(x∗, x̂) ∈ intQ.

As β ∈ Q∗, so we get

βT [g(x)− g(x∗)− (dg)+(Hx∗,x(0
+))− σd(x∗, x)] ≥ 0, for all x ∈ S (8)

and

−βT g(x̂) + βTσd(x∗, x̂) > 0. (9)

Adding (7) and (8) and using (6), we get

−βT g(x) − βTσd(x∗, x) ≥ 0, for all x ∈ S (10)

which contradicts (9). Hence α 6= 0.

Now, we will establish some sufficient optimality conditions for (VP).

Theorem 3.5. Suppose x∗ ∈ X0, F : S → Rm, defined as F (x) =
f(x) + ε‖x − x∗‖e, is locally ρ-K-connected and g is locally σ-Q-connected at
x∗ and there exist 0 6= α ∈ K∗ and β ∈ Q∗ satisfying the conditions (5) and
(6), then x∗ is a weak εe-quasi efficient solution of (VP) provided

αT ρ+ βTσ ≥ 0. (11)

Proof. Suppose that x∗ is not a weak εe-quasi efficient solution of (VP),
then there exists x ∈ X0 such that

f(x∗)− f(x) ∈ intK + ε‖x− x∗‖e.

Since 0 6= α ∈ K∗, it follows that

αT (f(x∗)− f(x)− ε‖x− x∗‖e) > 0
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which gives

αT (F (x∗)− F (x)) > 0. (12)

Since F is locally ρ-K-connected and g is locally σ-Q-connected at x∗, therefore

F (x)− F (x∗)− (dF )+(Hx∗,x(0
+))− ρd(x∗, x) ∈ K

and
g(x)− g(x∗)− (dg)+(Hx∗,x(0

+))− σd(x∗, x) ∈ Q.

Consider

αT (F (x)−F (x∗)) ≥ αT ((dF )+(Hx∗,x(0
+)) + αTρd(x∗, x)

≥ αT ((df)+(Hx∗,x(0
+))+ε‖dH+

x∗,x(0)‖e)+αT ρd(x∗, x)

≥ −βT (dg)+(Hx∗,x(0
+))− βTσd(x∗, x)

≥ −βT (g(x) − g(x∗))

= −βT g(x) ≥ 0, which contradicts (12).

Theorem 3.6. Suppose x∗ ∈ X0, F : S → Rm, defined as F (x) =
f(x) + ε‖x − x∗‖e, is locally pseudo ρ-K-connected and g is locally quasi σ-
Q-connected at x∗ and there exist, 0 6= α ∈ K∗ and β ∈ Q∗ satisfying the
conditions (5) and (6) then x∗ is a weak εe-quasi efficient solution of (VP)
provided (11) holds.

Proof. Let x∗ ∈ X0. Then βT g(x) ≤ 0.
Also βT g(x∗) = 0, it follows that

βT (g(x) − g(x∗)) ≤ 0.

If β 6= 0, we have g(x)− g(x∗) ∈ intQ.
Since g is locally quasi σ-Q-connected at x∗, therefore, we get

−(dg)+(Hxx,x(0
+))− σd(x∗, x) ∈ Q

which gives
βT (dg)+(Hx∗,x(0

+)) + βTσd(x∗, x) ≤ 0.

The above inequality holds if β = 0. On using (5), we get

αT (df)+(Hx∗,x(0
+)) + ε‖dH+

x∗,x(0)‖α
T e ≥ βTσd(x∗, x)
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≥ −αT ρd(x∗, x) .

Thus

− αT (dF )+(Hx∗,x(0
+))− αTρd(x∗, x) ≤ 0

⇒ − (dF )+(Hx∗,x(0
+))− ρd(x∗, x) /∈ intK

Since F is locally pseudo ρ-K-connected at x∗, we get

− (F (x)− F (x∗)) /∈ intK

⇒ (f(x)− f(x∗)) /∈ − intK − ε‖x− x∗‖e

Hence x∗ is a weak εe-quasi efficient solution of (VP).

Theorem 3.7. Suppose x∗ ∈ X0, F : S → Rm, defined as F (x) =
f(x) + ε‖x − x∗‖e, is locally pseuds ρ-K-connected and g is locally naturally
quasi σ-Q-connected at x∗ and there exist 0 6= α ∈ K∗ such that condition
(5) holds and condition (6) holds for all β ∈ Q∗. Then x∗ is a weak εe-quasi
efficient solution of (VP) provided (11) holds.

Remark 3.1. In the above result, if the assume F to be strictly locally
pseudo ρ-K-connected at x∗, then x∗ is a weak εe-quasi efficient solution of
(VP).

4. Duality

We now formulate Approximate Wolfe-type dual which generalizes the Wolfe-
type dual given by Stancu-Minasian [16].

(AWD) K-maximize φ(u, α, β) = f(u) + βT g(u)k

subject to

αT (df)+(Hu,x(0
+))+βT (dg)+(Hu,x(0

+))+ε‖dH+
u,x(0)‖α

T e≥0

for all x ∈ X0

where k ∈ intK is a fixed element, 0 6= α ∈ K∗, αTk = 1, β ∈ Q∗, u ∈ S.
Let

W= {(u, α, β)∈S×Rm×Rp | αT (df)+(Hu,x(0
+))+βT (dg)+(Hu,x(0

+))
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+ ε‖dH+
u,x(0)‖α

T e ≥ 0, for all x ∈ X0, 0 6= α ∈ K∗,

αTk = 1, β ∈ Q∗, u ∈ S}

denote the set of all feasible points of (AWD).

We now prove the various duality results for (VP) and (AWD) by assuming
the functions involved to be locally ρ-connected with respect to the cone.

Theorem 4.1 (Approximate Weak Duality). Suppose that F : S → Rm

is defined as F (x) = f(x) + ε‖x − u‖e. Let x and (u, α, β) be feasible points
for (VP) and (AWD) respectively. If F is locally ρ-K-connected and g is locally
σ-Q-connected at u, then

f(x)− φ(u, α, β) /∈ − intK − ε‖x− u‖e,

provided (11) holds.

Proof. If possible, suppose

f(x)− φ(u, α, β) ∈ − intK − ε‖x− u‖e.

Since 0 6= α ∈ K∗, β ∈ Q∗ and x ∈ X0, therefore

αT (f(u) + βg(u)k − f(x)− ε‖x− u‖e) > 0 ≥ βT g(x).

This implies that

αT f(u) + βT g(u) > αT f(x) + βT g(x) + ε‖x− u‖αT e. (13)

Since F is locally ρ-K-connected, therefore

F (x)− F (u)− (dF )+(Hu,x(0
+))− ρd(x∗, x) ∈ K.

That implies

f(x) + ε‖x− u‖e− f(u)

− lim
λ→0+

[f(Hu,x(λ)) + ε‖Hu,x(λ)− u‖e− f(u)]

λ
− ρd(x∗, x) ∈ K.

Thus

f(x)− f(u)− (df)+(Hu,x(0
+))+ε‖x−u‖e−ε‖dH+

u,x(0)‖e−ρd(x∗, x) ∈ K.
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Since α ∈ K∗, therefore

αT f(x)− αT f(u)− αT (df)+(Hu,x(0
+))

+ ε‖x− u‖αT e− ε‖dH+
u,x(0)‖α

T e− αTρd(x∗, x) ≥ 0. (14)

Now since g is locally σ-Q-connected and β ∈ Q∗, we get

βT g(x)− βT g(u) − βT (dg)+(Hu,x(0
+))− βTσd(x∗, x) ≥ 0. (15)

Adding (14) and (15), we get

αT f(x)− αT f(u) + βT g(x) − βT g(u) + ε‖x− u‖αT e

≥ αT (df)+(Hu,x(0
+)) + βT (dg)+(Hu,x(0

+))

+ ε‖dH+
u,x(0)‖α

T e+ (αT ρ+ βTσ)d(x∗, x).

By the dual feasibility of (u, α, β) and (11), we get

αT f(x)− αT f(u) + βT g(x) − βT g(u) + ε‖x− u‖αT e ≥ 0.

This gives

αT f(u) + βT g(u) ≤ αT f(x) + βT g(x) + ε‖x− u‖e

which contradicts (13).

Hence f(x)− φ(u, α, β) /∈ − intK − ε‖x− u‖e.

Theorem 4.2 (Approximate Strong Duality). Let x∗ ∈ X be a weak
εe-quasi efficient solution of (VP). Let (df)+(Hx∗,x(0

+)) + ε‖dH+
x∗,x(0)‖e and

(dg)+(Hx∗,x(0
+)) are K-subconvexlike and Q-subconvexlike functions of x re-

spectively with respect to the same arc Hx∗,x. Suppose that g satisfies the
generalized Slater’s-type cone constraint qualification at x∗, then there exist
0 6= α∗ ∈ K∗, β∗ ∈ Q∗ such that (x∗, α∗, β∗) is feasible for (AWD). Moreover, if
the conditions of Approximate Weak Duality Theorem 4.1 hold then (x∗, α∗, β∗)
is a weak εe-quasi efficient solution of (AWD).

Proof. Suppose all the conditions of Theorem 3.4 are satisfied therefore
there exist 0 6= α ∈ K∗ and β ∈ Q∗ such that conditions (5) and (6) hold.

Setting

α∗ =
α

αk
, β∗ =

β

αk
.
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We get α∗
T

k = 1 where 0 6= α∗ ∈ K∗. By condition (5), (x∗, α∗, β∗) is feasible
solution for (AWD). If possible let (x∗, α∗, β∗) be not a weak εe-quasi efficient
solution of (AWD), then there exists (u, α, β) feasible solution for (AWD) such
that φ(u, α, β) − φ(x∗, α∗, β∗) ∈ intK + ε‖u− x∗‖e.

Since by condition (6), α∗, g(x∗) = 0, we get

φ(u, α, β) − f(x∗) ∈ intK + ε‖u− x∗‖e,

which is a contradiction to Approximate Weak Duality Theorem 4.1. Hence
(x∗, α∗, β∗) must be a weak εe-quasi efficient solution of (AWD).

Theorem 4.3 (Strict Converse Duality Theorem). Suppose F : S → Rm,
where F (x) = f(x) + ε‖x− u‖e. Let x and (u, α, β) be feasible points for (VP)
and (AWD) respectively such that

αT (f(x) + ε‖x− u‖e) = αT f(u) + βT g(u). (16)

If F is strictly locally ρ-K-connected and g is locally σ−Q connected at u then
x = u provided (11) holds.

Proof. Let if possible x 6= u. Since F is strictly locally ρ-K-connected and
g is locally σ-Q-connected at u, therefore

F (x)− F (u)− (dF )+(Hu,x(0
+))− ρd(x∗, x) ∈ intK

and
g(x) − g(u)− (dg)+(Hu,x(0

+))− σd(x∗, x) ∈ Q .

Thus

f(x)−f(u)−(df)+(Hu,x(0
+))+ε‖x− u‖e− ε‖dH+

u,x(0)‖e−ρd(x∗, x)∈ intK .

Since 0 6= α ∈ K∗and β ∈ Q∗, therefore

αT f(x)− αT f(u)− αT (df)+(Hu,x(0
+)) + ε‖x− u‖αT e

− ε‖dH+
u,x(0)‖α

T e− αTρd(x∗, x) > 0 (17)

and

βT g(x)− βT g(u) − βT (dg)+(Hu,x(0
+))− βTσd(x∗, x) ≥ 0. (18)

Adding (17) and (18), we get

αT f(x)− αT f(u) + βT g(x) − βT g(u) + ε‖x− u‖αT e
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> αT (df)+(Hu,x(0
+)) + βT (dg)+(Hu,x(0

+))

+ ε‖dH+
u,x(0)‖α

T e+ (αT ρ+ βTσ)d(x∗, x).

Using the dual feasibility of (u, α, β) and (11), we have

αT f(x)− αT f(u) + βT g(x)− βT g(u) + ε‖x− u‖αT e > 0

This implies
αT (f(x) + ε‖x− u‖e) > αT f(u) + βT g(u),

which is a contradiction to (16). Hence x = u.
We now associate the following Approximate Mond-Weir type dual with

(VP),

(AVD) K-maximize f(u)

subject to αT (df)+(Hu,x(0
+)) + βT (dg)+(Hu,x(0

+))

+ ε‖d(H+
u,x(0)‖α

T e ≥ 0, for all x ∈ X0

βT g(u) ≥ 0

u ∈ S, 0 6= α ∈ K∗, β ∈ Q∗

where e ∈ K \ {0}.

Theorem 4.4 (Approximate Weak Duality). Suppose that F : S → Rm is
defined by F (x) = f(x) + ε‖x− u‖e. Let x ∈ X0 and (u, α, β) be dual feasible.
If F is locally pseudo ρ-K-connected and g is locally quasi σ-Q-connected at u,
then

f(x)− f(u) /∈ − intK − ε‖x− u‖e

provided (11) holds.

Theorem 4.5 (Approximate Strong Duality). Let x∗ be a weak εe-quasi
efficient solution of (VP). Let (df)+(Hx∗,x(0

+))+ε‖dH+
x∗,x(0)‖e and (dg)+(Hx∗,x(0

+))
be K-subconvexlike and Q-subconvexlike functions of x respectively with re-
spect to the same arc Hx∗,x. Let g satisfies the generalized Slater’s type cone
constraint qualification at x∗. Then there exist 0 6= α∗ ∈ K∗, β∗ ∈ Q∗ such
that (x∗, α∗, β∗) is feasible for (AVD). Moreover, if for each feasible (x, α, β)
hypotheses of Theorem 4.4 holds then (x∗, α∗, β∗) is a weak εe-quasi efficient
solution of (AVD).
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