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Abstract: In this paper (strictly) locally p-K-connected, locally (naturally)
quasi p-K-connected and (strictly) locally pseudo p-K-connected functions are
defined for a vector optimization problem over cones. Involving these functions
necessary and sufficient optimality conditions are obtained for an approximate
weak quasi efficient solution of this problem. Approximate Wolfe type and
Mond-Weir type duals are formulated and duality results are established.
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1. Introduction

Various generalizations of convex functions have appeared in literature. Among
them we recall the class of arcwise connected functions introduced by Ortega
and Rheinboldt [10] defined on arc wise connected sets. Kaul et al. [6] defined
locally connected sets by reducing the width of the arc part. These sets include
arc wise connected sets [1] and locally star shaped sets [2]. The authors then
defined locally connected functions, locally ()-connected on a locally connected
set. These functions include semi-locally convex functions and semi-locally
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quasiconvex functions defined earlier by Kaul and Kaur [8] as special cases.
Kaul and Lyall [7] defined the directional derivative (with respect to an arc) of
a real valued function and called it the right differential, at a point of a locally
connected set. They also defined locally P-connected functions in terms of
their right differentials and obtained a number of sufficient optimality criteria
for a non-linear programming problem involving these functions. Lyall et al. [9]
further extended these results to the multiple objective programming. Recently,
Suneja et al. [18] extended these results to the vector optimization problem
over cones with generalized cone locally connected functions. Necessary and
sufficient optimality conditions and Wolfe and Mond-Weir type duality results
are obtained for a weak quasi efficient solution involving these functions. Vial
[19] defined p-convex functions. Jeyakumar [4, 5| defined p-pseudo convex and
p-quasi convex functions. Later on Preda and Niculescu [11, 12] defined p-
locally arc-wise connected, p-locally Q-connected and p-locally P-connected
functions and gave necessary and sufficient optimality conditions and Wolfe and
Mond-Weir type duality results for minimax and non-linear multiple objective
programming problem. After that authors like Stancu-Minasian [13, 14, 15],
Stancu-Minasian and Andreea Madalina Stancu [17] obtained these results for
non-linear programming problems involving these functions.

2. Definitions and preliminaries
Let S € R™ be a nonempty set and K C R" be closed convex pointed cone
with non-empty interior. The positive dual cone K* of K is given by
K*={y* € R™:2Ty* >0, forall z € K}.
Also, Flores-Bezan et al. [3] have shown that k& € int K < Ak > 0, for all
A e K\ {0}.

Definition 2.1 ([6]). A set S C R™ is said to be locally connected if for
each z,x* € S there exists a maximum positive number a(z*,z) < 1 and a
vector valued function Hy« 5 : [0,1] — S such that

Hy« (A €S, 0<A<a(z",x), (1)
H~ , is continuous in the interval ]0, a(z*, z)[ and
Hy 2(0) = 2%, Hp (1) =x. (2)

Let S C R" be a locally connected set with respect to the are Hy« , : [0,1] — 5
satisfying (1) and (2). f : S — R™be a vector valued function.
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Definition 2.2 ([7]). The function f is said to have a right derivative (or
right differential) at 2* € S with respect to Hy« , if

f(Hx*,x()‘)) — f(dj*)

.
A0+ A
exists. This limit is denoted by (df)"(Hyx(07)). If /\lier w exists
—0

then it is denoted by dH. ;;J(O), and is called directional derivative of Hy« , at
A=0.

Generalizing the concept of p-locally arc-wise connected function [16], we
define new notions of locally p-K-connected function and its generalizations.
For this purpose we consider p € R™, d : S xS — Ry, f: 5 — R™ and a
closed convex pointed cone K in R™ having non-empty interior. We say that

fis
(i) locally p-K-connected (pKLCN) at z* € S with respect to Hy« , if for
every x € S

f@) = f(@") = (df) T (Ho» 2(07)) — pd(a”,7) € K.
If p = 0 then the above definition reduces to locally K-connected function.

(ii) Strictly locally p-K-connected (pKSLCN) at * € S with respect to Hy«
if for every z € S, x # x*

f@) = f(@*) = (df)" (Hy 2 (07)) = pd(a”, z) € int K.

(ili) locally quasi p-K-connected (pKLQCN) at z* € S with respect to Hyx »
if for every = € S,

f@) = f(&") ¢ int K = —(df )" (Hor 2(07)) — pd(2", 2) € K.

(iv) locally naturally quasi p-K-connected (pKLNQCN) at z* € S with re-
spect to Hy« ; if for every x € S,
—[f(@) = f(z")] € K = —(df)" (Hy+ 2(07)) — pd(a*, ) € K.
(v) locally pseudo p-K-connected (pKLPCN) at 2* € S with respect to Hy« ,

if for every = € S,

f(@*) = f(z) e int K = —(df )" (Hy» o (0%)) — pd(2*, z) € int K.
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(vi) strictly locally pseudo p-K-connected (pKSPLCN) at z* € S with respect
to Hy« , if for every z € S

—[f(@) = f@")] € K = —(df)H(Hae o(07)) — pd(a", ) € int K.

If fis pKLCN at each 2* € S, then f is said to be pKLCN on S. Same is
applied for its generalizations.

Theorem 2.3. If f is locally p-K-connected at x* € S with respect to the
arc Hy« ,, then f is locally naturally quasi p-K-connected at x* with respect
to the same arc Hy« ,.

Proof. Let f be locally p-K-connected at x* € S with respect to the arc
Hy» ., then for every x € S

F(@) = J(@") — (@) (Hye ) — pd(a”,2) € K. (3)
Let
~[f(2) - fa)] € K. (4)
Adding (3) and (4), we get
~(df)* (o ) — pd(a”,2) € K.

Hence f is locally naturally quasi p-K-connected at z* with respect to the same
arc Hyx 4. Ol

The converse of the above theorem may not hold as can be seen from the
following example.

Example 2.4. Let S = {(v1,22) : 23 + 23 > 1, 21 # 219, 11 > 0, 73 > 0}
and Hy- () = ({(1 = N)at™ + Me2}2 {(1 = Nab” + A2} /?).

Then S is a locally connected set with respect to the arc given by Hy= ().

Let z* = (1,1) and K = {(z1,22) : —21 < x9, z2 > 0}. Let us define
f:S— R?as

) = (—2323, 23 — 23), if vy > 1,19 > 1,
’ (—=1,0), otherwise.
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Let p=(0,—1) and

1 .
P 1f1‘1>1,$2>1,

(r1 + %)% + (29 +23)?, ifx1 < 1,29 <1 and
d(z*,z) = (1 +27)? + (vo + 25)? < 1,
if x1 <1,29 <1 and

(1 + 27)% + (22 + 235)? > 1.

1
(x14x7)2+ (22 +25)2>

Now

(2 — 2% — 23,23 — 23), if both the components
(df)+(Hx*,x(0+)) = of Ha:*,a:()\) > 1,
(0,0), otherwise.

f is locally naturally quasi p-K-connected at z*, because f(z) — f(z*) € —K.
This implies 1 — 2323 < 23 — 2?2 and 23 — 22 > 0. So

_(df)+(H:c*,:v(0+)) —pd(z”,z) € K.
But f is not locally p-K-connected at z*, because for x = (2, 2)

F@) = f(@*) = (df) T (Hor 2(07)) — pd(2”, ) = (-9, i) ¢ K.

Theorem 2.5. If f is locally quasi p-K-connected at x* € S with respect
to the arc Hy« , then f is locally naturally quasi p-K-connected with respect
to the same arc H« ;.

The converse of the above theorem may not hold as can be seen by the
following example.

Example 2.6. Let S be a locally connected set with respect to the arc
Hy+ 2 () as defined in Example 2.4.

Let z* = (1,1) and K = {(z1,22) : 21 <0, 2 < x1}.

Let f: S — R? be defined as

1 1 :
(— 97%)’ ifxy > 1,29 > 1,

2
7

(1,1), otherwise.

f(z1,22) = {

Let p=(1,1) and d(z*,x) is defined as in Example 2.4.
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Now

(1 —2%,1—23), if both the components
(df )" (Hye (07)) = of Hyx o(A) > 1,
(0,0), otherwise.

f is locally naturally quasi p-K-connected at x* because
flx) = f(z%) € K.

This implies
1—2?>0and 2? > 23.

So
—(df )T (Hy (07)) — pd(z*,2) € K.

But f is not locally quasi p-K-connected at x*, because for z = (2,2)

f@) - f(a") = (??) ¢t K.

But
) a0 = pi” ) = () ¢ R

Remark 2.1. The following diagram illustrates the relation between
pKLCN, pKLQCN and pKLNQCN:

pKLCN [/ pKLNQCN % pKLQCN

3. Optimality conditions

Consider the following vector optimization problem:

(VP) K-minimize f(z)
subject to — g(x) € Q,

where f: S — R™, g: S — RP, S C R" is a locally connected set such that
for each x,2* € S, there exists a vector valued function H,- () satisfying the
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conditions (1) and (2) and the right differentials of f and g exist at x* with
respect to the same arc Hy« ;.

Let K C R™ and @ C RP be closed convex cones with nonempty interiors
and X" = {x € S: —g(x) € Q} be the set of all feasible solutions of (VP).

Definition 3.1. Let e € R, e >0 and e € K \ {0}. 2* € X" is said to be
ce-quasi efficient solution of (VP) if

f(z) = f(z*) ¢ =K\ {0} — ||z — a*||le, for all z € X°,
and a weak ce-quasi efficient solution of (VP) if
f(z) = f(z*) ¢ —int K — ||z — z*||e, for all 2 € X©.

When € = 0, ee-quasi efficient solution (weak ee-quasi efficient solution) of (VP)
will coincide with efficient solution (weak efficient solution) of (VP).

We now give the generalized Slater’s type cone constraint qualification
which will be used in obtaining the necessary optimality conditions.

Definition 3.2. The function g is said to satisfy generalized Slater’s type
cone constraint qualification at z* if g is locally o-Q-connected at x* and there
exists & € S such that

—g(Z) + od(z*,2) € int Q.

Theorem 3.3 ([17]). Suppose that x* € X" be a weak ee-quasi efficient
solution of (VP). If (df ) * (Hy» - (07)) +¢l||[dH . ,(0)|le and (dg)™ (H,» »(0)) are
K-subconvexlike and (Q-subconvexlike functions of x respectively with respect
to the same arc Hy« ;. Then there exist « € K*, B € Q* not both zero such
that

o (df)* (Hyr 2(07)) + 87 (dg) " (Ho 2(07)) +el|dH- 4 (0)a” e >0,
for all x€ S. (5)
slg(z*) =0. (6)

Theorem 3.4. Suppose that the hypothesis of Theorem 3.3 holds. Then
there exist « € K*, B € Q* (not both zero) such that conditions (5) and (6)
hold. If g satisfies the generalized Slater’s type cone constraint qualification at
x* then o # 0.
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Proof. If possible, let « = 0. Then form (5), we get
BY(dg) " (Hp (07)) >0, forall x € S. (7)

Since g satisfies the generalized Slater’s type cone constraint qualification at
z*, therefore

g(x) — g(a™) = (dg) " (Hy» 2(07)) —0d(a*,2) € Q, forallze S
and there exist £ € S such that
—g(Z) + od(z*,2) € int Q.
As B € QF, so we get
Bllg(x) = g(a*) — (dg)* (Hp 2(07)) — od(a*,2)] 2 0, forall z €S (8)
and
—BTg(&) + BT od(a*, &) > 0. (9)
Adding (7) and (8) and using (6), we get
—8Tg(z) — frod(z*,z) >0, for all z € S (10)
which contradicts (9). Hence o # 0. O

Now, we will establish some sufficient optimality conditions for (VP).

Theorem 3.5. Suppose z* € X%, F : S — R™, defined as F(z) =
f(z) + ellx — x*||e, is locally p-K-connected and g is locally o-Q-connected at
x* and there exist 0 # a € K* and € Q* satisfying the conditions (5) and
(6), then z* is a weak ee-quasi efficient solution of (VP) provided

olp+pTo>0. (11)

Proof. Suppose that z* is not a weak ce-quasi efficient solution of (VP),
then there exists € X? such that

f(@®) — f(z) € int K +¢ljlx — z%|e.
Since 0 # « € K*, it follows that

ol (f(z") = f(2) —ellz — 27[le) > 0
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which gives
o' (F(z*) — F(z)) > 0. (12)
Since F' is locally p-K-connected and g is locally o-Q-connected at x*, therefore
F(z) = F(2*) = (dF)* (Hye 4(07)) - pd(a*,2) € K

and
g(z) — g(z*) — (dg)" (Hp+ o (07)) — od(z*,z) € Q.

Consider

ol (F(z)=F(2")) 2 o (dF)* (Ha-2(07)) + o pd(2", z)

> o ((df) " (Hor o (07)) +el|dH 4 (0)[e)+a” pd(z”, 2)
> —p1(dg)" (Hor 2(07)) = Bl od(a”, 2)
> 1 (g(x) — g(2"))

—B8Tg(x) >0, which contradicts (12).

Theorem 3.6. Suppose z* € X°, F : S — R™, defined as F(x) =
f(z) + ¢||lx — x*||e, is locally pseudo p-K-connected and g is locally quasi o-
Q-connected at r* and there exist, 0 # o € K* and § € Q* satisfying the
conditions (5) and (6) then x* is a weak ee-quasi efficient solution of (VP)
provided (11) holds.

Proof. Let x* € X°. Then %g(x) <O0.
Also 8T g(z*) = 0, it follows that

B (g(x) — g(a*)) < 0.

If 5 # 0, we have g(x) — g(z*) € int Q.
Since g is locally quasi o-Q-connected at x*, therefore, we get

_(d9)+(sz,$(0+)) - Ud(x*ax) € Q

which gives
BT (dg)* (Hpe (07)) + T od(2*, z) < 0.

The above inequality holds if § = 0. On using (5), we get
o (df )T (Hoe o (0F)) + elldH 5 4 (0)|a”e > T od(a", 2)
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> —alpd(z*,z).
Thus

- O‘T(dF)Jr(Hx*,x(OJr)) - and(x*,x) <0
= — (dF)T(Hp 1(0%)) — pd(z*,z) ¢ int K

Since F' is locally pseudo p-K-connected at z*, we get

— (F(z) - F(z")) ¢ int K
= (f(z) = f(@")) ¢ —int K —ellz — z™[|e

Hence z* is a weak ce-quasi efficient solution of (VP). O

Theorem 3.7. Suppose z* € X°, F : S — R™, defined as F(z) =
f(z) + el|lz — x*||e, is locally pseuds p-K-connected and g is locally naturally
quasi o-Q-connected at x* and there exist 0 # o € K* such that condition
(5) holds and condition (6) holds for all § € Q*. Then x* is a weak ce-quasi
efficient solution of (VP) provided (11) holds.

Remark 3.1. In the above result, if the assume F' to be strictly locally
pseudo p-K-connected at x*, then z* is a weak ce-quasi efficient solution of
(VP).

4. Duality

We now formulate Approximate Wolfe-type dual which generalizes the Wolfe-
type dual given by Stancu-Minasian [16].
(AWD) K-maximize ¢(u,a, 3) = f(u) + 8T g(u)k
subject to
ol (df ) (Huw(07)) +57 (dg) " (Hua(07)) +el|dH, (0)[a" e >0
for all z € X°

where k € int K is a fixed element, 0 # a € K*, o’k =1, Q*, u e S.
Let

W= {(u,a, ) €Sx R™x RP | o™ (df )" (H, (07))+ BT (dg) T (H,.(0T))
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+el|dH,f,(0)]a"e >0, forall z€ X% 0#ae K,
oTk=1, Q" ue S}

denote the set of all feasible points of (AWD).
We now prove the various duality results for (VP) and (AWD) by assuming
the functions involved to be locally p-connected with respect to the cone.

Theorem 4.1 (Approximate Weak Duality). Suppose that F': S — R™
is defined as F(z) = f(z) + ¢|lz — ulle. Let  and (u,«, 3) be feasible points
for (VP) and (AWD) respectively. If F' is locally p-K-connected and g is locally
o-Q-connected at u, then

f(x) = ¢(u,a, B) ¢ —int K — ez — ulle,
provided (11) holds.
Proof. If possible, suppose
f(x) — d(u,a, B) € —int K — |z — ulle.
Since 0 # a € K*, f € Q* and = € XV, therefore
ol (f(u) + Bg(uwk — f(z) — ellz — ulle) > 0> 5T g(x).
This implies that
ol f(u) + 87 g(u) > o f(z) + BT g(x) +el|lz — ulla”e. (13)
Since F' is locally p-K-connected, therefore
F(x) = F(u) = (dF)" (Hu(07)) — pd(2”,7) € K.
That implies

f(x) +elz —ulle — f(u)

o () el () — alle = £(u)
A—0t A

— pd(z*,z) € K.
Thus

f@) = f(u) = (df )" (Hua(07)) +ellz—ulle—el|dH, . (0)l|e—pd(z", x) € K.
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Since o € K*, therefore

o’ f(x) — o’ f(u) — o' (df )T (Hyua(0T))

+ el — ullale — €||dHII(O)||aTe —alpd(z*,z) > 0.

Now since g is locally o-Q-connected and § € Q*, we get

B g(x) — B g(w) — 87 (dg)* (Huw(0F)) — BT od(2",2) > 0.

Adding (14) and (15), we get

ol f(z) — ol f(u) + B g(x) — BT g(u) + el — ula’e
> o’ (df) " (Huo(01)) + 87 (dg) T (Hue(07))
+el|ldH, L (0)]|e" e+ (o' p+ BT o)d(z*, ).

By the dual feasibility of (u,«, ) and (11), we get
ol f(z) — ol f(u) + BT g(x) — BT g(u) + ellz — ulla’e > 0.
This gives
ol f(u) + BT g(u) < o f(x) + B g(x) +ellz —ulle

which contradicts (13).
Hence f(x) — ¢(u, o, ) ¢ —int K — €|z — ulle.

O

Theorem 4.2 (Approximate Strong Duality). Let z* € X be a weak
ee-quasi efficient solution of (VP). Let (df )" (Hy= 2(0%)) 4 el|[dH> ,(0)[le and
(dg)" (Hy» »(01)) are K-subconvexlike and Q-subconvexlike functions of x re-
spectively with respect to the same arc H,«,. Suppose that g satisfies the
generalized Slater’s-type cone constraint qualification at z*, then there exist
0# a* € K*, 5* € Q* such that (z*,a*, *) is feasible for (AWD). Moreover, if
the conditions of Approximate Weak Duality Theorem 4.1 hold then (x*, o, 5*)

is a weak ce-quasi efficient solution of (AWD).

Proof. Suppose all the conditions of Theorem 3.4 are satisfied therefore

there exist 0 # o € K* and € @Q* such that conditions (5) and (6) hold.

Setting

@ B
@ _ak’ﬁ ak’
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We get o* k = 1 where 0 # o* € K*. By condition (5), (x*,a*, 5*) is feasible
solution for (AWD). If possible let (z*,a*, 5*) be not a weak ce-quasi efficient
solution of (AWD), then there exists (u, «, 3) feasible solution for (AWD) such
that ¢(u, o, ) — ¢(z*, 0%, %) € int K + €lju — z*|e.

Since by condition (6), a*, g(z*) = 0, we get

¢(u7a7/6) - f(x*) € int K + EHU - JI*HG,

which is a contradiction to Approximate Weak Duality Theorem 4.1. Hence
(z*,a*, f*) must be a weak ce-quasi efficient solution of (AWD). O

Theorem 4.3 (Strict Converse Duality Theorem). Suppose F': S — R™,
where F(z) = f(z) + ¢||z — u|le. Let x and (u, «, 3) be feasible points for (VP)
and (AWD) respectively such that

ol (f(z) +ellz — ulle) = a” f(u) + 6T g(w). (16)

If F is strictly locally p-K-connected and g is locally o — Q) connected at u then
x = u provided (11) holds.

Proof. Let if possible x # u. Since F' is strictly locally p-K-connected and
g is locally o-Q-connected at u, therefore

F(z) — F(u) — (dF)" (Hyu:(07)) — pd(z*, x) € int K

and
g(x) — g(u) — (dg)" (Hue(0)) — od(a™,2) € Q.
Thus

f@) = f ()= (df ) (Huw(07)) +ellz — ulle — e||dHy , (0)[e—pd(2*, 2) € mt K .
Since 0 # « € K*and 8 € Q*, therefore

ol f(x) = o fu) — o (df )" (Huo(07)) + el — ulla’e
- 5||dH:"$(0)||aTe —al'pd(z*,z) >0 (17)

and
BT g(x) = 87 g(u) = BT (dg)" (Hu2(01)) — BT od(a*, ) > 0. (18)
Adding (17) and (18), we get

ol f(a) — ol f(u) + BT g(z) — BT g(u) + ellz — ulla’e
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> ol (df)F (Hue (01)) + 87 (dg) ™ (Hu e (07))
+ z-:HdH{ZgC(O)HaTe + (ol p+ pLo)d(z*, x).

Using the dual feasibility of (u,«, 3) and (11), we have
o' f(x) — o f(u) + BT g(x) — 87 g(u) +ellz —ulaTe >0

This implies
o (f(x) +ellz —ulle) > T f(u) + 57 g(u),
which is a contradiction to (16). Hence x = u.

We now associate the following Approximate Mond-Weir type dual with
(VP),

(AVD) K-maximize f(u)
subject to ' (df)* (Hu.(01)) + 87 (dg)* (Ha 2 (07))
+elld(H,,(0)]a"e >0, forall ze X’

BTg(u) >0
ues, 0£acK* BecQ*

where e € K \ {0}. O

Theorem 4.4 (Approximate Weak Duality). Suppose that F': S — R™ is
defined by F(z) = f(z) +¢||z —ulle. Let z € X® and (u, a, B8) be dual feasible.
If F is locally pseudo p-K-connected and g is locally quasi o-()Q-connected at u,
then

flx) = f(u) ¢ —int K —ellz — ulle
provided (11) holds.

Theorem 4.5 (Approximate Strong Duality). Let z* be a weak ce-quasi
efficient solution of (VP). Let (df )" (Hy+ »(0"))+¢l|dH . (0)le and (dg) " (Hy- 2(07))
be K-subconvexlike and (Q-subconvexlike functions of x respectively with re-
spect to the same arc H,« ,. Let g satisfies the generalized Slater’s type cone
constraint qualification at x*. Then there exist 0 # o* € K*, * € Q* such
that (z*,a*, 8*) is feasible for (AVD). Moreover, if for each feasible (x,«, [3)
hypotheses of Theorem 4.4 holds then (x*,a*, 3*) is a weak ce-quasi efficient
solution of (AVD).
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