In this work, the non-local diffusion system with Neumann boundary conditions
(1)
is studied, where
, is a bounded, connected and smooth domain, and are continuous functions and
, nonnegative and real functions. Existence and uniqueness of solutions is proved. For some particular functions , , the simultaneous and non-simultaneous blow-up for solutions is analyzed. Finally, the blow-up rate for the solution is given.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution
model for phase transitions, Arch. Rat. Mech. Anal., 138 (1997), 105-136.
[2] M. Bogoya, A nonlocal nonlinear diffusion equation in higher space dimensions,
J. Math. Anal. Appl., 344 (2008), 601-615.
[3] M. Bogoya, Sobre la explosi´on de una ecuaci´on de difusi´on no local con
t´ermino de reacci´on, Bolet´ın de Matem´aticas, 24, No 2 (2017), 117-130.
[4] M. Bogoya, A non-local diffusion coupled system equations in a bounded
domain, Boundary Value Problems, 2018 (2018), 38.
[5] M. Bogoya, C.A. G´omez, Blow-up analysis for a non-local discrete diffusion
system, Contemporary Engineering Sciences, 11, No 54 (2018), 2679-2690.
[6] C. Cort´azar, M. Elgueta and J.D. Rossi, A non-local diffusion equation
whose solutions develop a free boundary. Ann. Henri Poincar´e, 6, No 2
(2005), 269-281.
[7] E. Chasseigne, M. Chaves and J.D. Rossi, Asymptotic behaviour for nonlocal
diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.
[8] F. Dicksteina, M. Escobedo, A maximum principle for semilinear parabolic
systems and applications, Nonlinear Analysis, 45 (2001), 825-837.
[9] M. Escobedo, M.A. Herrero, A semilinear parabolic system in a bounded
domain, Ann. Matematica Pura Appl., 165, No 4 (1993), 315-336.
[10] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,
In: Trends in Nonlinear Analysis, Springer, Berlin (2003), 153-191.
[11] M. P´erez Llanos, J.D. Rossi, Blow-up for a non-local diffusion problem with
Neumann boundary conditions and a reaction term, Nonlinear Analysis,
70, No 4 (2009), 1629-1640.
[12] F. Quiros, J.D. Rossi, Non simultaneous blow-up in a semilinear parabolic
system, Zeitschrift fur Angewandte Mathematik und Physik, 52, No 2
(2001).
[13] P. Quittner, P. Souplet, Superlinear Parabolic Problems. Blow-up,
Global Existence and Steady States, Birkha¨user Advanced Texts Basler
Lehrb¨ucher (2007).
[14] J.D. Rossi, On existence and nonexistence in the large for an N dimensional
system of heat equations with nontrivial coupling at the boundary, New
Zealand J. Math., 26 (1997), 275-285.
[15] J.D. Rossi, P. Souplet, Coexistence of simultaneous and non-simultaneous
blow-up in a semilinear parabolic system, Differential and Integral Equations, 18, No 4 (2005), 405-418.
[16] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, and A.P. Mikhailov,
Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin
(1995).
[17] P. Souplet, S. Tayachi, Optimal condition for non-simultaneous blow-up in
a reaction-difusion system, J. Math. Soc. Japan, 56, No 2 (2004), 571-584.
[18] M. Wang, Blow-up rate estimates for semilinear parabolic systems, J.
Math. Anal. Appl., 257 (2001), 46-51.