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1. Introduction

We consider the even order delay differential equation of the form

(
l2(r)

(
l1(r)

(
x(n−2)(r)

)α)′)′
+ p(r)

(
x(n−2)(δ(r))

)α

+

∫ d

c
q(r, ̺)f(r, x(g(r, ̺)))d̺ = 0, (E1)

where α ≥ 1 is a quotient of odd positive integers and c < d. Throughout this
paper, we use the following assumptions:





l1, l2, p, δ ∈ C
(
I, [0,∞)) and l1, l2 > 0, where I = [r0,+∞);

q, g ∈ C[I × [c, d], [0,∞)), δ(r) ≤ r, limr→+∞ δ(r) = ∞,
g(r, ̺) is a nondecreasing

function for ̺ ∈ [c, d] satisfying g(r, ̺) ≤ r, limr→+∞ g(r, ̺) = ∞;
f ∈C(R,R), there exists a constant k1>0 such that f(r, x(r))/xβ≥k1.

We define the operators

N(x(r)) = l1(r)
(
x(n−2)(r)

)α
, l(x(r)) = l2(r)(N(x(r)))′.

By a solution to (E1), we mean a function x(r) in C2[rx,∞) for which
N(x(r)), l(x(r)) is in C1[rx,∞) and (E1) is satisfied on some interval [rx,∞),
where rx ≥ r0. We consider only solutions x(r) for which sup{|x(r)| : r ≥
r} > 0 for all r ≥ rx. A solution of (E1) is called oscillatory if it is neither
eventually positive nor eventually negative on [rx,∞) and otherwise, it is said
to be nonoscillatory. The equation itself is termed oscillatory if all its solutions
oscillate.

We define

Ω1(r1, r) =

∫ r

r1

l
−1/α
1 (s)ds, Ω2(r1, r) =

∫ r

r1

l−1
2 (s)ds,

Ω3(r1, r) =

∫ r

r1

(r − x)n−4

(n− 4)!

(Ω2(r1, x)

l1(x)

)1/α
du,

Ω∗
3(r1, r) =

∫ r

r1

(r − x)n−3

(n− 3)!

(Ω2(r1, x)

l1(x)

)1/α
du,

for r0 ≤ r1 ≤ r <∞ and assume that

Ω1(r1, r) = ∞, Ω2(r1, r) = ∞ as r → ∞. (1)
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Fourth/Higher-order differential equations are often used to model a wide
range of physical, chemical, and biological processes in a mathematical way
[1, 3]. For example, it could be used to solve problems with elasticity, struc-
ture deformation, or soil settlement. In mechanical and engineering problems,
questions about whether or not there are oscillatory and non-oscillatory solu-
tions are very important [5]. Many authors have done a lot of research on the
problem of oscillation in fourth (or higher) order differential equations. They
have come up with many ways to get oscillatory criteria for fourth (or higher)
order differential equations. Several studies have had very interesting results
related to oscillatory properties of solutions of neutral differential equations and
damped delay differential equations with/without distributed deviating argu-
ments [4, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20].

In this paper, using suitable Riccati type transformation, integral averaging
condition, and comparison method, we present some sufficient conditions which
insure that any solution of Eq. (E1) oscillates when the associated second order
equation

(l2(r)z
′(r))′ +

p(r)

l1(δ(r))
z(r) = 0, (E2)

is oscillatory or nonoscillatory.

2. Basic lemmas

In this section, we state and prove some lemmas that are frequently used in the
remainder of this paper.

Lemma 1. [21] Assume that Eq. (E2) is nonoscillatory. If Eq.(E1) has a
nonoscillatory solution x(r) on I, for r1 ≥ r0, then there exists a r2 ∈ I such
that x(r)N(x(r)) > 0 or x(r)N(x(r)) < 0 for r ≥ r2.

Lemma 2. If Eq.(E1) has a nonoscillatory solution x(r) which satisfies
x(r)N(x(r)) > 0, in Lemma 1 for r ≥ r1 ≥ r0. Then,

N(x(r)) > Ω2(r1, r) l(x(r)), r ≥ r1, (2)

x′(r) > Ω3(r1, r) l
1/α(x(r)), r ≥ r1, (3)

and

x(r) > Ω∗
3(r1, r) l

1/α(x(r)), r ≥ r1. (4)
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Proof. Let Eq. (E1) have a non-oscillatory solution x. Suppose that there
exists a r1 ≥ r0 such that x(r) > 0 and x(g(r, ̺)) for r ≥ r1. From Eq. (E1),
we have

l′(x(r)) = −
( p(r)

l1(δ(r))

)
N(x(δ(r))) − k1

∫ d

c
q(r, ̺)xβ(g(r, ̺))d̺ ≤ 0,

and l(x(r)) is non increasing on I, we get

N(x(r)) ≥

∫ r

r1

(
N(x(s))

)′
ds =

∫ r

r1

(l2(s))
−1l(x(s)) ds ≥ Ω2(r1, r) l(x(r)),

this implies that

x(n−2)(r) ≥ l1/α(x(r))
(
(l1(r))

−1Ω2(r1, r)
)1/α

.

Now, integrating above inequality repeatedly from r1 to r and using l(x(r)) ≤ 0,
we find

x′(r) ≥ l1/α(x(r))

[ ∫ r

r1

(r − x)n−4

(n− 4)!

(Ω2(r1, x)

l1(x)

)1/α
du

]

= l1/α(x(r))Ω3(r1, r),

and

x(r) ≥ l1/α(x(r))

[ ∫ r

r1

(r − x)n−3

(n − 3)!

(Ω2(r1, x)

l1(x)

)1/α
du

]

= l1/α(x(r))Ω∗
3(r1, r), for r ≤ r1.

Lemma 3. [21] Let ξ ∈ C1(I,R+), ξ(r) ≤ r, ξ′(r) ≥ 0 and G(r) ∈
C(I,R+) for r ≥ r0. Let y(r) be a bounded solution of 2nd-order delay differ-
ential equation

(
l2(r) y

′(r))′ −Θ(r) y(ξ(r)) = 0. (E3)

If

lim sup
r→∞

∫ r

ξ(r)
Θ(s)Ω2(ξ(r), ξ(s)) ds > 1 (5)
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or

lim sup
r→∞

∫ r

ξ(r)

[(
l2(r)

)−1
∫ r

x
Θ(s) ds

]
du > 1, (6)

where l2(r) is as in (E1), then the solutions of (E3) are oscillatory.

3. Main results

In this section, we establish some oscillation criteria for Eq. (E1) by comparison
Principle Method. For convenience, we denote

q̃(r, ̺) =

∫ d

c
q(r, ̺) d̺, ψ(r) = exp

(∫ r

r1

Q(s)ds
)
,

Q(r) =
( p(r)

l1(δ(r))

)
Ω(r1, δ(r)), Θ∗(r) = k1 q̃(r, ̺)

(
Ω∗
3(r1, g(r, d))

)β
.

Theorem 4. Suppose that α ≥ β , conditions (1) hold, Eq. (E2) is
nonoscillatory. Suppose there exists a ξ ∈ C1(I,R) such that g(r, ̺) ≤ ξ(r) ≤
δ(r) ≤ r, ξ′(r) ≥ 0 for r ≥ r1, and (5) or (6) holds with

Θ(r)=ℓ∗ k1
[
gn−3(r, d)

]β
q̃(r, ̺)

(
Ω1(ξ(r), g(r, d))

)β
−

p(r)

l1(δ(r))
≥ 0, r ≥ r1,

for constant ℓ∗ > 0. Moreover, suppose that every solution of the first-order
delay equation have the following form

z′(r) + ψ1− β
α (g(r, d))Θ∗(r) z

β
α (g(r, d)) = 0, (7)

then every solution of Eq.(E1) is oscillatory.

Proof. Let Eq. (E1) have a nonoscillatory solution x(r). Suppose, there
exists a r ≥ r1 such that x(r) > 0 and x(g(r, ̺)) > 0 for some r ≥ r0. From
Lemma 1, x(r) has the conditions either N(x(r)) > 0 or N(x(r)) < 0 for r ≥ r1.

Assume that x(r) has the condition N(x(r)) > 0, for r ≥ r1, then one can
easily see that l(x(r)) > 0 for r ≥ r1. Take r2 ≥ r1 such that g(r, ̺) ≥ r1 for
r ≥ r2, g(r, ̺) → ∞ as r → ∞ and we have (4),

x(g(r, d)) > Ω∗
3(r1, g(r, d))

(
l(x(g(r, d)))

)1/α
, r ≥ r2. (8)
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By substituting (2), (8) in Eq.(E1) and l(x(r)) is decreasing, then

(
l(x(r))

)′
+
( p(r)

l1(δ(r))

)
l(x(r))Ω(r1, δ(r))

+k1 q̃(r, ̺)
(
Ω∗
3(r1, g(r, d))

)β(
l(x(g(r, d)))

)β/α
≤ 0. (9)

Take φ = l(x(r)), we have

φ′(r) +Q(r)φ(r) + Θ∗(r)φ
β
α (g(r, d)) ≤ 0, (10)

or
(
ψ(r)φ(r)

)′
+ ψ(r)Θ∗(r)φ

β
α (g(r, d)) ≤ 0, for r ≥ r2. (11)

Next, assume z = ψ φ > 0 and ψ(g(r, d)) ≤ φ(r), thus we have

z′(r) + ψ1− β
α (g(r, d))Θ∗(r)z

β
α (g(r, d)) ≤ 0. (12)

This means (12) is a positive for this inequality. Also, by [2, Corollary 2.3.5],
we get a contradiction of positivity of Eq. (E1).

Next, assume x(r) satisfies the condition N(x(r)) < 0, for r ≥ r1, we get
x(n−3)(r) > 0, l(x(r)) ≥ 0 for r ≥ r3(≥ r2). By [16, Lemma 2], one can now
deduce that there exists a constant θ ∈ (0, 1) such that

x(r) ≥ θ rn−3 x(n−3)(r), for r ≥ r3. (13)

Set w(r) = x(n−3)(r), then w′(r) = x(n−2)(r) < 0. Using (13) in Eq.(E1) we get

(
l2(r)

(
l1(r)

[
w′(r)

]α)′)′
+ p(r)(w′(δ(r)))α

+k1
[
θgn−3(r, d)

]β
q̃(r, ̺)wβ(g(r, d)) ≤ 0,

and so l1(r)
[
w′(r)

]α
< 0, we have

(
l1(r)

[
w′(r)

]α)′
> 0 for r ≥ r3. Now, for

v ≥ x ≥ r3, we get

w(x) > w(x) − w(v) = −

∫ v

x
l
−1/α
1 (s)(l1(s)(w

′(s))α)1/αds

≥ l
1/α
1 (v)(−w′(v))

(∫ v

x
l
−1/α
1 (s)ds

)

= l
1/α
1 (v)(−w′(v))Ω1(x, v).
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Taking x = ξ(r) and v = g(r, d), we obtain

w(g(r, d)) > Ω1(g(r, d), ξ(r))l
1/α
1 (v)(−w′(v)) = Ω1(g(r, d), ξ(r)) y(ξ(r)),

where y(r) = l
1/α
1 (v)(−w′(v)) > 0 for r ≥ r3. From Eq.(E1), we get y(r) is

decreasing and g(r, d) ≤ ξ(r) ≤ δ(r) ≤ r, and

(l2(r)z
′(r))′ + p(r)

l1(δ(r))
z(δ(r))

≥ k1
[
θgn−3(r, d)

]β
q̃(r, ̺)Ω1(g(r, d), ξ(r))z

β
α
−1(ξ(r))z(ξ(r)).

Since z is decreasing and α ≥ β, there exists a constant ℓ such that z
β
α
−1(r) ≥ ℓ

for r ≥ r3. Thus, we obtain

(l2(r)z
′(r))′≥

(
ℓ k1

[
θgn−3(r, d)

]β
q̃(r, ̺)Ω1(g(r, d), ξ(r))−

p(r)

l1(δ(r))

)
z(ξ(r)).

Proceeding similarly to the proof of Lemma 3, we get the required conclusion.
We omit the details.

Theorem 5. If α ≥ β and (1) hold, Eq. (E2) is nonoscillatory. Suppose
there exists η, ξ ∈ C1(I,R) such that g(r, ̺) ≤ ξ(r) ≤ δ(r) ≤ r, ξ′(r) ≥ 0 and
η > 0 for r ≥ r1 with

lim sup
r→∞

∫ r

r4

(
k1 η(s) q̃(s, ̺)−

A2(s)

4B(s)

)
ds = ∞ for all r1 ∈ I, (14)

where, for r ≥ r1,

A(r) =
η′(r)

η(r)
−

p(r)

l1(δ(r))
Ω2(r1, δ(r)) (15)

and

B(r) = β ℓβ−α
1 η−1(r)g′(r, d)

(
Ω∗
3(r1, g(r, d))

)β−1(
Ω3(r1, g(r, d))

)1/α
, (16)

also (5) or (6) holds with Θ(r) as in Theorem 4. Then every solution of Eq.(E1)
is oscillatory.

Proof. Let Eq.(E1) have a nonoscillatory solution x(r). Assume that, there
exists a r ≥ r1 such that x(r) > 0 and x(g(r, ̺)) > 0 for some r ≥ r0. From
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Lemma 1, x(r) satisfies the conditions either N(x(r)) > 0 or N(x(r)) < 0 for
r ≥ r1. If condition N(x(r)) < 0 holds, the proof follows from Theorem 4.

Next, if condition N(x(r)) > 0 holds, define

w(r) = η(r)
l(x(r))

xβ(g(r, d))
, r ∈ I, (17)

then w(r) > 0 for r ≥ r1. From (4) and l′(x(r)) < 0, we have

w(r) = η(r)
l(x(r))

xβ(g(r, d))
≤ η(r)

l(x(g(r, d)))

xβ(g(r, d))

≤ η(r)(Ω∗
3(r1, g(r, d)))

−αxα−β(g(r, d)), (18)

for r ≥ r1. From (3) and definition of N(x(r)), we find

x′(g(r, d)) = x′(g(r, d)) ≥ Ω3(r1, g(r, d))(l(x(r)))
1/α

≥ Ω3(r1, g(r, d))(l(x(g(r, d))))
1/α .

Then

x′(g(r, d))

x(g(r, d))
≥

(
Ω3(r1, g(r, d))

η(δ(r))

)1/α
η1/α(δ(r))(l(x(r)))1/α

xβ/α(g(δ(r), d))
xβ/α−1(g(δ(r), d))

=

(
Ω3(r1, g(r, d))

η(r)

)1/α

w1/α(r)xβ/α−1(g(δ(r), d)). (19)

Also, since there exists a ℓ1 (constant) and r2 ≥ r1 such that for l(x(r)) ≤
l(x(r2)) = ℓα1 , it follows that

x(n−2)(r) ≤ ℓ1

( 1

l1(r)

∫ r

r2

1

l2(s)
ds
)1/α

ds = ℓ1

(Ω2(r2, r)

l1(r)

)1/α
, (20)

and hence

x(r) ≤ ℓ1Ω
∗
3(r2, r), r ≥ r2. (21)

Further,

xβ/α−1(g(r, d)) ≥
(
ℓ∗1
)β/α−1(

Ω∗
3(r3, g(r, d))

)β/α−1
, r ≥ r3. (22)

By using (21) in (18), we obtain

w(r) ≤
(
ℓ∗1
)α−β

η(r) (Ω∗
3(r1, g(r, d)))

−β , (23)
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and hence

w
1

α
−1(r) ≤

(
ℓ∗1
)(α−β)( 1

α
−1)

η
1

α
−1(r) (Ω∗

3(r1, g(r, d)))
−β( 1

α
−1). (24)

Now differentiating (17), we get

w′(r) =
η′(r)

η(r)
w(r) +

L[4]x(r)

L[3]x(r)
w(r)− βg′(r, d)

x′(g(r, d))

x(g(r, d))
w(r). (25)

Using Eq. (E1), (2) in (25), we have

w′(r) ≤
[η′(r)
η(r)

−
p(r)

l1(g(r, d))
Ω2(r3, g(r, d))

]
w(r)− k1η(r)q̃(r, ̺)

−βg′(r)
x′(g(r, d))

x(g(r, d))
w(r)

≤ A(r)w(r) − k1η(r)q̃(r, ̺) − βg′(r)
x′(g(r, d))

x(g(r, d))
w(r). (26)

By using (19), (22) and (25) in (26), we have

w′(r) ≤ A(r)w(r) − k1η(r)q̃(r, ̺)

−
β ℓβ−α

1 g′(r)

η(r)

(
Ω∗
3(r1, g(r, d))

)β−1(
Ω3(r1, g(r, d))

)1/α
w2(r)

= A(r)w(r) − k1η(r)q̃(r, ̺) +B(r)w2(r) (27)

= −k1η(r)q̃(r, ̺) +

[
√
B(r)w(r)−

1

2

A(r)√
B(r)

]2
+

1

4

A2(r)

B(r)

≤ −k1η(r)q̃(r, ̺) +
1

4

A2(r)

B(r)
. (28)

Integrating (28) from r4(> r3) to r gives

∫ r

r4

(
k1 η(s) q̃(s, ̺)−

1

4

A2(s)

B(s)

)
ds ≤ w(r4), (29)

which contradicts (14).

Corollary 6. Assume α ≥ β and the conditions (1) hold, Eq.(E2) is
nonoscillatory. Suppose there exist η, ξ ∈ C1(I,R) such that g(r, ̺) ≤ ξ(r) ≤
δ(r) ≤ r, ξ′(r) ≥ 0 and η > 0 for r ≥ r1 such that the function A(r) ≤ 0,

lim sup
r→∞

∫ r

r1

(
η(s) q̃(s, ̺)

)
ds = ∞ for all r1 ∈ I, (30)
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where A(r) is defined in (15), also (5) or (6) holds with Θ(r) as in Theorem 4.
Then every solution of Eq.(E1) is oscillatory.

Next, we examine the oscillation results of solutions of (E1) of Philos-type.
Let D0 = {(r, s) : a ≤ s < r < +∞} , D = {(r, s) : a ≤ s ≤ r < +∞} the
continuous function H(r, s), H : D → R belong to the class function R, then

(i) H(r, r) = 0 for r ≥ r0 and H(r, s) > 0 for (r, s) ∈ D0,

(ii) H has a continuous and non-positive partial derivative on D0 with respect
to the second variable such that

−
∂H(r, s)

∂s
= h(r, s)[H(r, s)]1/2 ,

for all (r, s) ∈ D0.

Theorem 7. Assume α ≥ 1 and the conditions (1) hold, Eq. (E2) is
nonoscillatory. Suppose there exists η, ξ ∈ C1(I,R) such that g(r, ̺) ≤ ξ(r) ≤
δ(r) ≤ r, ξ′(r) ≥ 0, η > 0 and H(r, s) ∈ R for r ≥ r1 with

lim sup
r→∞

1

H(r, r4)

∫ r

r4

(
k1 η(s) q̃(s, ̺)H(r, s)

−

[
h(r, s)−A(s)

√
H(r, s)A(s)

]2

4B(s)

)
ds = ∞, (31)

for all r4 ∈ I, where A(r), B(r) is defined in Theorem 5, also (5) or (6) holds
with Θ(r) as in Theorem 4. Then every solution of Eq.(E1) is oscillatory.

Proof. Let Eq.(E1) have a nonoscillatory solution x(r). Assume that, there
exists a r ≥ r1 such that x(r) > 0 and x(g(r, ̺)) > 0 for some r ≥ r0. Proceed-
ing as in the proof of Theorem 5, we obtain the inequality (27), i.e.,

w′(r) ≤ A(r)w(r)− k1η(r)q̃(r, ̺) +B(r)w2(r),

and so,

∫ r

r4

H(r, s)η(s)q̃(s, ̺)ds ≤

∫ r

r4

H(r, s)[−w′(s)+A(s)w(s)−B(s)w2(s)]ds
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= −H(r, s)
[
w(s)

]r
r4

+

∫ r

r4

[∂H(r, s)

∂s
w(s)

+H(r, s)
[
A(s)w(s) −B(s)w2(s)

]]
ds

= H(r, r4)w(r4)−

∫ r

r4

[
w2(s)B(s)H(r, s)

+w(s)
(
h(r, s)

√
H(r, s)−H(r, s)A(s)

)]
ds

≤ H(r, r4)w(r4) +

∫ r

r4

P 2(r, s)

4B(s)
ds,

which contradicts to (31). The rest of the proof is similar to that of Theorem
5 and hence is omitted.

Corollary 8. Suppose that all conditions of Theorem 7 are satisfied with
(31) replaced by

lim sup
r→∞

1

H(r, r4)

∫ r

r4

k1H(r, s)η(s) q̃(s, ̺)ds = ∞

and

lim sup
r→∞

1

H(r, r4)

∫ r

r4

[
h(r, s) −A(s)

√
H(r, s)A(s)

]2

4B(s)
ds <∞,

then Eq.(E1) is oscillatory.

Below, we present an example to show application of the main results.

Example 9. For r ≥ 1/2, consider even order differential equation

(
1/2r

(
9e−r(r)

(
x′′(r)

))′)′
+36e−s/2x(ii)(r/2)+

∫ 2

1

r

3
x(̺, 36er/3)d̺=0. (32)

Here l1 = 1
(2r−1)3/2

, l2 = 1
2r−1 , α = 3/2, β = 1, p(r) = (2r−1)3/2

t2
, q(r, ̺) = r/3

and δ(r) = r, g(r, ̺) = r/3. Now pick η(r) = r, we obtain Ω1(r1, r) = r(r − 1),

Ω2(r1, r) = r(r−1), Ω2(r1, r) = r(r−1), A(r) = 2−r
r and B(r) = (t−3)n−3

3n−2(n−3)(n−4)!

Take r2 = 4, we get

lim sup
r→∞

∫ r

4

(
k1 η(s) (s/3) −

A2(s)

4B(s)

)
ds→ ∞ as r → ∞,
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and all hypotheses of Theorem 5 are satisfied, so every solution of (32) is oscil-
latory.

4. Conclusions

It is clear that the form of the problem Eq. (E1) is more general than all the
problems considered in this study. In this paper, using the suitable Riccati
type transformation, integral averaging condition, and comparison method, we
offer some oscillatory properties which ensure that any solution of Eq. (E1)
oscillates under assumption of Ω1(r1, r) = ∞, Ω2(r1, r) = ∞ as r → ∞. Also,
it would be useful to extend oscillation criteria of Eq.(E1) under the condition
of Ω1(r1, r) <∞, Ω2(r1, r) <∞ as r → ∞.
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