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Abstract: This paper studies the properties of solutions for a nonlinear
diffusion problem with a gradient nonlinearity. The problem is formulated as
a partial differential equation with a nonlinear term that depends on both the
solution and its gradient. The main results are: existence and uniqueness of
weak solutions in suitable function spaces; regularity and positivity of solutions;
asymptotic behavior of solutions as time goes to infinity; comparison principles
and maximum principles for solutions. The proofs are based on variational
methods, fixed point arguments, energy estimates, and comparison techniques.
Some examples and applications are also given to illustrate the features of the
problem.
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1. Introduction

In this article, we deal with the following doubly degenerate parabolic equations

Received: March 23, 2023 © 2023 Academic Publications
§Correspondence author



406 Z.R. Rakhmonov, A.A. Alimov
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= uq(0, t), t ∈ Qt, (2)

u|t=0 = u0(x) ≥ 0, x ∈ Qx, (3)

where m > 1, k ≥ 1 and q > 0 are given parameters and Qt = {t|t > 0},
Qx = {x|x ∈ R+}, Q = Qt ×Qx.

The problem (1) arises in different applications (see [9]-[16] and references
therein). Equation (1) is of degenerate type. Therefore, in the domain Q,

where u = 0,∇u = 0 it is a degenerate type. Therefore, in this case, we need
to consider a weak solution from having a physical sense class.

The problem (1), for the particular values of numerical parameters, is inten-
sively studied by many authors (see [15]-[16] and literature therein). Self-similar
solutions to this problem are based on investigating qualitative properties of the
problem such as Fujita type global solvability, asymptotic solution, localization
of solution, finite speed propagation of distribution, blow-up solution, and so
on by many authors (for example, see [1]-[11] and literature therein).

The problem (1) has been intensively studied by many authors (see [4]-
[17] and references therein) for various values of numerical parameters. In
particular, Keng Deng and H.A. Levine studied (1) the p-Laplacian case and
they investigated the local and global existence, also the global nonexistence of
a solution to the Cauchy problem [2].

V.A. Galaktionov and H.A. Levine studied (1) in the cases: k = m = 1,

the p-Laplacian and k = 1. They have proved that if
2m

m+ 1
< q < 2m, then

all solutions of the problem (1) become unbounded in finite time [3]. They also
found that the solutions of problem (1) have the following properties:

- if 0 < q ≤
2m

m+ 1
, then global solution of problem (1) exists;

- if q > 2m, then problem (1) admits nontrivial global solutions with small
initial,
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where qc = 2m is the critical Fujita exponent and q0 =
2m

m+ 1
is the critical

global existence exponent.
The author of the work [9] studied the following problem

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
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
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

(1 + |x|)n ut = ∇
(

|∇um|p−2∇um
)

, (x, t) ∈ RN
+ × (0, ∞) ,

− |∇um|p−2 ∂u
m

∂x1
(0, t) = uq, xi = 0, i = 2, n, t > 0,

u (x, 0) = u0 (x) ≥ 0, x ∈ RN
+ ,

(4)

where RN
+ =

{

(x1, x
′) : x′ ∈ RN−1, x1 > 0

}

, n > −p, m > 1, q > 0, 1 < p <

1 +
1

m
.

It is shown that when 0 ≤ q ≤
(m (n+ 1) + 1) (p− 1)

p+ n
, each solution of

problem (4) is global in time and when q > m (p− 1)+
p− 1

N + n
, (4) has nontrivial

global solutions with small initial data.
Yongsheng Mi, Chunlai Mu, and Rong Zeng investigated [13] the equation

below

ut = div (|∇u|p∇um) + uq, (5)

where p > 0, m, q > 1.

They proved that, if p > 0, N ≥ 2, m > 1, q > qc = m+ p+
p+ 2

N
, then of

the Cauchy problem (5) blows up in finite time and investigated the large time
behavior and the life spans of solutions and the secondary critical exponent to
Cauchy problem.

The authors of the work [14] studied the following problem
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∂x
(0, t) = uq (0, t) , t > 0,

u (x, 0) = u0 (x) ≥ 0, x ∈ R+,

(6)

where p > 2, β, q > 0, n ∈ R+, u0 (x) - is a bounded, continuous, nonnegative
and nontrivial initial data. They showed that when 0 <β ≤ 1 and 0 < q ≤
(2− n) (p− 1)

p− n
, then each solution of problem (6) is global in time.
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Furthermore, these authors established the critical Fujita exponent and
analyzed the self-similar solution to Neumann problem (6).

Zhiyong Wang and Jingxue Yin studied in [17] the Hamilton–Jacobi equa-
tion (1) in the case k = 1, and they established a gradient blow-up solution
with a small L1 initial datum when q > m− 1 > 2.

2. The main results

The main aim of this paper is to establish the conditions of blow-up, global
existence, and nonexistence of solutions to the Neumann problem. Also, to
analyze the asymptotics of the solution under some conditions.

Theorem 1. If k ≥ 1 +
2

m
and q ≤

m(k + 1)

m+ 1
inequalities hold, then each

solution of problem (1)-(3) is global in time.

Proof. We look for a globally defined in time supersolution of the following
self-similar form

ū(x, t) = eλ1t
(

M + e−Lxe−λ 2t
) 1

k
, x, t ∈ R+, (7)

where λi > 0, L > 0, i = 1, 2; M = ‖u0‖
k
∞ + 1.

After computation we have

∂ū

∂t
= λ1e

λ1t
(

M + e−Lxe−λ 2t
)

1
k
+

λ2L

k
xe(λ1−λ2)t

(

M + e−Lxe−λ 2t
)

1
k
−1

× e−Lxe−λ 2t
≥ λ1e

λ1t
(

M + e−Lxe−λ 2t
)

1
k
≥ λ1M

1
k eλ1t.

Hence

∂ū

∂t
≥ λ1M

1
k eλ1t, (8)
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 = mLm+1e(kλ1m−λ2(m+1))te−mLxe−λ 2t

≤ mLm+1e(kλ1m−λ2(m+1))t,

(9)
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k eqλ1t. (11)

Now, we will show that the function ū(x, t) is a supersolution of problem (1)-(3).
According to the comparison principle, it must satisfy the following inequality:
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From (8)-(11), we obtain the following system



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

λ1M
1
k eλ1t ≥ mLm+1e(kλ1m−λ2(m+1))t +

(
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k e(λ1−λ2)pt,

Lme(kλ1−λ2)mt = (M + 1)
q

k eqλ1t.

(13)

The last expression brings the following:

λ2 =
λ1(km− 2)

m
, L = (M + 1)

q

mk .

Substituting the above into inequality in (13), we achieve:

λ1 ≥ kλ1m− (m+ 1)λ2 + (λ1 − λ2) p = λ1 (mk + p)− λ2 (m+ p+ 1) .

Computation of this inequality gives us:

q ≤
m(k(p+ 1) + 1− p)

m+ p+ 1
,

λ1 = M
−
1

k


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



.

Hence, ū (x, 0) ≥ u0 (x). Thus, by the comparison principle, Theorem 1 is
proved.
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Remark 1. Theorem 1 shows that the critical global existence exponent

of the problem (1)-(3) is q =
m(k(p + 1) + 1− p)

m+ p+ 1
.

Theorem 2. If 0 < p <
m+ 1

2
<

k

m
and q ≥

m(k(p + 1) + 1− p)

m+ p+ 1
inequality holds, then every solution of problem (1)-(3) blows up in finite time.

Proof. We will seek a blow up subsolution of the self-similar form:

u(x, t) = tα1ϕ(η), η = xt−α2 . (14)

And we need to evaluate the following derivatives:
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∣

∣
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∣
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∣

∣
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= t(α1−α2)p |ϕη |
p .

We choose α1,2 as follows:

α1 − 1 = α1mk − (m+ 1) , α2 = (α1 − α2) p.

Hence, we find α1,2 the following form

α1 =
m+ 1− p

mk − 1 + (p− 1)(m(k − 1)− 2
,

α2 =
mk − p

mk − 1 + (p− 1)(m(k − 1)− 2)
.

(15)

Also, we have a boundary flux as follows:

tα1mk−mα2

∣

∣

∣ϕk
η

∣

∣

∣
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ϕk
η

∣

∣

∣

∣

η=0

= tα1qϕq (0) ,

0 ≤ α1q − α1mk +mα2 =
(m+ 1− p) (q −mk) +m (mk − p)

mk − 1 + (p− 1) (m (k − 1)− 2)
.
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It is easy to see that, 1+
2

m
−

m+ 1

mp
< k < 1+

2

m
, 0 < p <

m+ 1

2
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q ≥
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m
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+
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where A, a are constants to be determined. It is easy to see that
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(
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m

)
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η
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(
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m
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(
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)p

η
p

m
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+
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k(m+ 1)

mk − 1

)m

a

+

(

α1 −
(m+ 1)α2
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η
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(
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+Ap−1
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η
p
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a− η
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m

)( m
mk−1

−1)(p−1)

+
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mk − 1

)m
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+ α1 −

(m+ 1)α2
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η
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≥

(
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(

k(m+ 1)

mk − 1

)m
m(k + 1)

mk − 1
+ α1

)

a.

Since, 0 < p <
m+ 1

2
<

k

m
, the last inequality holds. Thus u(x, t) is a subsolu-

tion of the problem (1)-(3) with every nontrivial initial data.

Theorem 3. If p >
m+ 1

2
and q ≤

m (k (p+ 1) + 1− p)

m+ p+ 1
, then every

solution of problem (1)-(3) blows up in time.

Proof. In this case, we prove that the flux condition makes the solution
large enough to be in the set of initial data for which the reaction term alone
is enough to cause blows up. We consider the self-similar subsolution of the
problem (1)-(3) without a source:

ub (x, t) = tµ1g (ξ) , ξ = xt−µ 2 . (18)

And we need to evaluate the following derivatives

∂ub

∂t
= tµ1−1 [µ1g − µ2ξgξ] ,
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∣

∣
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∣

∣
gkξ

∣

∣

∣

m−1
gkξ (0) ≤ u

q
b (0, t) = tµ1qgq (0) .

And we choose µ1,2 as follows:

{

µ1 − 1 = mkµ1 − (m+ 1)µ2

mkµ1 −mµ2 = µ1q = µ1 + µ2 − 1
⇒















µ1 =
m

m (k + 1− q)− q

µ2 =
mk − q

m (k + 1− q)− q
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(

∣

∣

∣
gkξ

∣

∣

∣

m−1
gkξ

)

ξ

+ µ2ξgξ − µ1g ≥ 0, (19)

−
∣

∣

∣gkξ

∣

∣

∣

m−1
gkξ (0) ≤ gq (0) . (20)

Let us construct
g (ξ) = B (b− ξ)

m
mk−1
+ ,

where b and B are positive constants to be determined. After some evaluations,
we have

(

∣

∣

∣gkξ

∣

∣

∣

m−1
gkξ

)

ξ

= Bmk

(

mk

mk − 1

)m
m

mk − 1
(b− ξ)

m
mk−1

−1

+ .

And we note that

µ2ξgξ − µ1g = −
µ2m

mk − 1
Bξ (b− ξ)

m
mk−1

−1

+ − µ1B (b− ξ)
m

mk−1
+

= −B (b− ξ)
m

mk−1
+

[

µ2m

mk − 1
b+ µ1b

]

= −bB

[

µ1 +
µ2m

mk − 1

]

(b− ξ)
m

mk−1
+ .

Take

Bmk−1km

(

m

mk − 1

)m+1

≥ b

(

µ1 +
µ2m

mk − 1

)

.

On the another hand,

Bmk−q

(

mk

mk − 1

)m

≤ b
m(q−1)
mk−1 and q ≤

m (k (p+ 1) + 1− p)

m+ p+ 1
,

it is easy to check that (19) and (20) are valid. It follows from the comparison
principle that for the problem (1)-(3) there exists as a solution blowing up in a
finite time.

Theorem 4. 1 ≤ p, q ≤ mk (p+ 1), then every solution of the problem

(1)-(3) is blow-up in finite time.

Proof. Theorem 4 can be proved in the same manner as it was done in
[9].
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3. Global existence

Based on a modification of the energy methods, comparison principle, and regu-
larization methods used in [1, 11], we investigate the secondary critical exponent
for the Cauchy problem (1). Before stating the results of the secondary critical
exponent, we start with some notations as follows.

Let Cb (R+) be the space of all bounded continuous functions in R+. For
a ≥ 0, we define

F a =

{

ϕ (x) ∈ Cb (R+) : ϕ (x) ≥ 0, lim
|x|→∞

sup |x|a ϕ (x) < ∞

}

. (21)

We denote

pc = m (k + 1) + 1, ac =
m+ 1− p

p− km
. (22)

Theorem 5. For k > 1,
1

k
< m <

1

k − 1
and p > pc = m (k + 1) + 1,

suppose that u0 (x) = µϕ (x) for some µ > 0 and ϕ (x) ∈ F a for some a ∈ (ac, 1),
then there is µ0 = µ0 (ϕ) > 0 such that the solution u (x, t) of the Cauchy

problem (1) exists globally for all t > 0 and µ < µ0 one has

‖u (x, t)‖∞ ≤ Ct−aλ, ∀t > 0 , (23)

where λ =
1

m+ 1 + a (km− 1)
, C = const. > 0.

Proof. We prove Theorem 5 by constructing a global supersolution. To do
this, we introduce the self-similar solution UM,a (x, t) to the following Cauchy
problem:

∂u

∂t
=

∂

∂x





∣

∣

∣

∣

∣

∂uk

∂x

∣

∣

∣

∣

∣

m−1
∂uk

∂x



 , (t, x) ∈ Q, (24)

u (x, 0) = u0 (x) = M |x|−a , x ∈ R. (25)

It is well known that the existence and uniqueness of the solution of (24)
have been established [4]. By the symmetric properties of (14), the solution
UM,a (x, t) is given in the following form

UM,a (x, t) = t−aλgM (r) , r = |x| t−λ, (26)
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where the positive function gM is the solution of the problem
(

∣

∣

∣

(

gkM

)

r

∣

∣

∣

m−1 (

gkM

)

r

)

r

+ λr (gM )r + aλgM (r) = 0, r > 0,

gM (r) ≥ 0, r ≥ 0, (gM )r (0) = 0, lim
r→+∞

ragM (r) = M.

(27)

We prove the existence of solution gM (r) to (27) by the following ordinary dif-
ferential equation(ODE) and moreover, we obtain the non-increasing property
of the solution gM (r).

Initially, given a fixed δ > 0, we consider the following Cauchy problem:
(

∣

∣

∣

(

zk
)

r

∣

∣

∣

m−1 (

zk
)

r

)

r

+ λrzr + aλz (r) = 0, r > 0,

z (0) = δ, zr (0) = 0.

(28)

According to the standard of the Cauchy problem for ODE and the methods
used in [4], we can obtain that the solution z (r) of the Cauchy problem (28) is
positive and z

r→∞
−→ 0, moreover

lim
r→+∞

raz(r) = M, (29)

for some M = M (δ) > 0.
Secondly, we prove that there exists a one-to-one correspondence between

M ∈ (0, +∞) and δ ∈ (0, +∞). Indeed, this can be seen from the following
relation:

zδ (r) = δz1

(

δlr
)

, l =
m+ 1

1− km
, (30)

where z1 (r) is the solution of (28) for δ = 1. Then,

M (δ) = δ1−alM (1) with M (1) = lim
r→∞

raz1 (r) . (31)

Therefore, we can deduce that, for each M > 0, there exists a positive, bounded,
and global solution gM satisfying (27).

Eventually, we prove that the solution z (r) is non-increasing, that is, gM is
also non-increasing. For this, the following lemmas are necessary.

Lemma 1. Let z (r) be the solution of (28), then

lim
r→0

∣

∣

(

zk
)

r

∣

∣

m−1 (
zk
)

r

r
= −aλz (0) . (32)
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Proof. Integrating the (28) over (0, ǫ) with ǫ > 0, we have

(

∣

∣

∣

(

zk
)

r

∣

∣

∣

m−1 (

zk
)

r

)

(ǫ) + λ

∫ ǫ

0
rzrdr + aλ

∫ ǫ

0
zdr = 0. (33)

Dividing by ǫ and letting ǫ → 0 in (33), we obtain

lim
ǫ→0

(

∣

∣

(

zk
)

r

∣

∣

m−1 (
zk
)

r

)

(ǫ)

ǫ
= −aλ lim

ǫ→0
z (ǫ) , (34)

which implies that (32) holds. The proof of Lemma 1 is complete.

Lemma 2. If there exists r0 ∈ [0, +∞) such that z (r0) = 0, then z (r) = 0
for all r ≥ r0.

Proof. We prove this by contradiction. Assuming that Lemma 2 does not
hold, it is easy to see that exists (0, ǫ) such that

z (r) > 0, z′ (r) > 0 in (r0, r0 + ǫ) . (35)

Integrating (28) over (r0, r) with r ∈ (r0, r0 + ǫ), we obtain

∣

∣

∣

(

zk
)

r

∣

∣

∣

m−1 (

zk
)

r
+ λrz (r) = λ (1− a)

∫ r

r0

z (r) dr. (36)

It follows from (35) and (33) that

λrz (r) ≤ λ (1− a)

∫ r

r0

z (r) dr ≤ λ (1− a) z (r) (r − r0) , (37)

equivalently

1 ≤ (1− a) (r − r0) . (38)

Letting r → r0 in (38), we obtain the inequality 1 ≤ 0, which is a contradiction.
The proof of Lemma 2 is complete.

Lemma 3. The solution z (r) of (28) is monotone non-increasing in
[0, +∞).
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Proof. We use the method based on the contradiction argument. Suppose
that, for some r0 > 0, z′ (r0) > 0, by Lemma 1, there exists r1 ∈ (0, r0) such
that

z′ (r1) = 0,

(

∣

∣

∣

(

zk
)

r

∣

∣

∣

m−1 (

zk
)

r

)

r

(r1) ≥ 0. (39)

By Lemma 2, we have z (r1) > 0. Using a similar argument in Lemma 1, we
obtain

lim
r→r1

(

∣

∣

(

zk
)

r

∣

∣

m−1 (
zk
)

r

)

(r1)

r − r1
= −aλz (r1) < 0. (40)

This is a contradiction with (37). The proof of Lemma 3 is complete.

Next, we apply the monotone properties to obtain the condition on the
global existence of the solution to (1).

Proof of Theorem 5. We demonstrate by taking the steps outlined below.

Since ϕ (x) ∈ F a, there exists a constant H > 0, such that

ϕ (x) ≤ H (1 + |x|)−a , ∀x ∈ R+. (41)

Taking M > H and the self-similar solution UM,a (x, t) of (24) defined as (26),
since lim

r→∞
ragM (r) = M > H, there exists a positive constant R0 such that

ragM (r) > H for r ≥ R0. (42)

Setting c = gM(R0) = min
r∈[0, R0]

gM > 0, it is easy to verify that ϕ (x) ≤ UM,a (x, t)

for all x ∈ R+, where t0 ∈ (0, 1) and ct−aλ
0 > ‖ϕ‖∞.

Let µ > 0, then w (x, t) = µUM,a

(

x, µkm−1t+ t0
)

is the solution of the
following problem

∂w

∂t
=

∂

∂x





∣

∣

∣

∣

∣

∂wk

∂x

∣

∣

∣

∣

∣

m−1
∂wk

∂x



 , (t, x) ∈ Q,

w (x, 0) = µUM,a (x, t0) ≥ µϕ (x) , x ∈ R+.

(43)

Taking δ = gM (0) and noting that gM (r) is non-increasing, we have

‖w (x, t)‖∞ = δµ
(

µkm−1t+ t0

)−aλ

. (44)
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Set v (x, t) = I (t)w (x, J (t)), where I (t) and J (t) are solutions of the following
problem

I ′ (t) = (δµ)p−1
(

µkm−1J (t) + t0

)−a(p−1)λ
Ip (t) , t ∈ (0, +∞) ,

J ′ (t) = Ikm−1 (t) , t ∈ (0, +∞) ,

I (0) = 1, J (0) = 0.

(45)

By a direct calculation, we obtain that v (x, t) satisfies

∂v

∂t
≥

∂

∂x





∣

∣

∣

∣

∣

∂vk

∂x

∣

∣

∣

∣

∣

m−1
∂vk

∂x



+

∣

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

∣

p

, (t, x) ∈ Q,

v (x, 0) = w (x, 0) = µUM,a (x, t0) ≥ µϕ (x) , x ∈ R+.

(46)

We prove that there exists a positive constant µ0 = µ0 (ϕ) such that the problem
(45) has a global solution (I (t) , J (t)) with I (t) bounded in [0, T ) if µ ∈ [0, µ0).
According to the standard theory of ODE, the local existence and uniqueness
of solution (I (t) , J (t)) of (45) hold. By (45), we have I ′ (t) > 0, I (t) > 1 for
t > 0, Moreover, the solution is continuous as long as the solution exists and
I (t) is finite.

From (45) when I (t) exists in [0, t], then J (t) is uniquely defined by

J (t) =

∫ t

0
Ikm−1 (y) dy. (47)

Since m > 1 and I (t) is increasing, we obtain

J (y) =

∫ y

0
Ikm−1 (η) dη ≥ Ikm−1 (0) y = y, ∀ y ∈ [0, t] . (48)

By (45), (46) and a > ac =
p−m− 1

km− p
, it follows that

1− I1−p (t) = (p− 1) (δµ)p−1
∫ t

0

(

µkm−1J (y) + t0

)−a(p−1)λ
dy

≤ (p− 1) (δµ)p−1
∫ t

0

(

µkm−1y + t0

)−a(p−1)λ
dy

≤
(p− 1) δp−1µp−km

a (p− 1)λ− 1
t
1−a(p−1)λ
0 .

(49)
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Let µ0 = µ0 (ϕ) be a positive constant defined by

p− 1

λ (a (p− km) +m+ 1− p)
δp−1µ

p−km
0 t

1−a(p−1)λ
0 =

1

2
. (50)

Then from (49), p > pc > km > 1 and a > ac =
m+ 1− p

p− km
, we have 1 ≤ I (t) ≤

2
1

p−1 for any µ ∈ (0, µ0], as long as I (t) exists globally.
On the other hand, by (45) and (48), we have

t ≤ J (t) ≤ 2
m−1
p−1 t, ∀t ≥ 0. (51)

Consequently, J (t) is also global.
For any µ ∈ (0, µ0], where µ0 = µ0 (ϕ) is defined as (50), the solution u (x, t)

of (1) with initial value u0 (x) = µϕ (x) exists globally and u (x, t) ≤ v (x, t) in
Q.

Therefore, there exists a positive constant C, such that

‖u (., t)‖∞ ≤ ‖v (., t)‖∞

2
1

p−1 δµ
(

µkm−1J (y) + t0

)−aλ

≤ Ct−aλ, ∀t > 0.
(52)

The proof of Theorem 5 is complete. The proof of the theorem is similar to the
proof of theorems in [6].

4. Asymptotics of self-similar solutions

Let us show the asymptotics of self-similar solutions.

The case
m+ 1

2−m (k − 1)
< p and q ≥

m (k (p+ 1) + 1− p)

m+ p+ 1
.

Consider the following self-similar solution of problem (1)-(3).
To simplify such auxiliary systems of equations, one can use the following

transformations:

u1 (x, t) = tα1ϕ (ξ) , ξ = xt−α2 , (53)

(

∣

∣

∣
ϕk
ξ

∣

∣

∣

m−1
ϕk
ξ

)

ξ

+ α2ξϕξ − α1ϕ+ |ϕξ |
p = 0, (54)
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−
∣

∣

∣ϕk
ξ

∣

∣

∣

m−1
ϕk
ξ (0) = ϕq (0) . (55)

Consider the function

ϕ̄ (ξ) = E
(

a− ξ
m+1
m

)
m

mk+1

+
, E =

(

mk − 1

m+ 1
α

1
m

2

) m
mk−1

, (56)

where a > 0, (d)+ = max {d, 0}. We show that the function (56) is the asymp-
totics of the solutions of problem (54)-(55).

Theorem 6. The compactly supported solution of problem (54)-(55) has
the asymptotic

ϕ (ξ) = ϕ̄ (ξ) (1 + o (1))

when ξ → a
m

m+1 .

Proof. We are looking for a solution to equation (54) in the format as below:

ϕ (ξ) = ϕ̄ (ξ)ω (τ) (57)

with τ = − ln
(

a− ξ
m+1
m

)

, where τ
ξ→a

m
m+1

−→ +∞.

Substituting (57) into equation (54) in relation to (56) yields the following:

d

dτ
(Lω)m + (Lω)m

{

a0 (τ)−
m

mk − 1

}

+ a1 (τ)ω
1−kLω − a2 (τ)ω

+a3 (τ)ω
(1−k)p (Lω)p = 0,

(58)

where

Lω =
dωk

dτ
−

mk

mk − 1
ωk,

a0 (τ) =
e−τ

a− e−τ
, a1 (τ) =

(

1 +
1

m

)−m

E1−mk
α2

k
,

a2 (τ) = α1

(

1 +
1

m

)−1−m

× E1−mka0 (τ) ,

a3 (τ) =

(

1 +
1

m

)p−1−m
Ep−mk

kp
e



1−
m

mk − 1



(p−1)τ
(

a− e−τ
)

p−m−1
m+1 .
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The solution of the last expression, in a certain vicinity of +∞, satisfies the
inequality:

ω > 0,
(

ωk
)′

−
mk

mk − 1
ωk 6= 0. (59)

Assuming that ϑ (τ) = (Lω)m, then

ϑ′ = −

(

a0 (τ)−
m

mk − 1

)

ϑ− a1 (τ)ω
1−kLω + a2 (τ)ω − a3 (τ)ω

(1−k)p. (60)

Furthermore, we consider the function:

θ (τ, λ) = −

(

a0 (τ)−
m

mk − 1

)

λ− a1 (τ)ω
1−kLω + a2 (τ)ω − a3 (τ)ω

(1−k)p,

(61)

where λ ∈ R.
The function θ (τ, λ) preserves sign on some interval [τ1; +∞) ⊂ [τ0; +∞)

for every fixed value λ.
Therefore, the functions θ (τ, λ) satisfies one of the following inequalities,

for all τ ∈ [τ1; +∞)

ϑ
′

> 0 or ϑ
′

< 0, (62)

from what we conclude that τ ∈ [τ1; +∞):

lim
τ→+∞

a1 (τ) =

(

1 +
1

m

)−m

E1−mk
α2

k
,

lim
τ→+∞

a0 (τ) = lim
τ→+∞

a2 (τ) = lim
τ→+∞

a3 (τ) = 0.

Suppose now that for the function ϑ (τ) limit at τ → +∞ does not exist.
Consider the case when one of the inequalities (62) is satisfied. As ϑ (τ) is
oscillating function around ϑ̄ = λ its graph intersects this straight line infinitely
many times in [τ1; +∞). But this is impossible, since in the interval [τ1; +∞)
just one of the inequalities (62) is valid and therefore, from (61) it follows that
graph of the function ϑ (τ) intersects the straight line ϑ̄ = λ only once in the
interval [τ1; +∞). Accordingly, the function ϑ (τ) has a limit at τ → +∞.

By assumption, the function ϑ (τ) has a limit at τ → +∞. Then, w′ (τ) has
a limit at τ → +∞, and this limit is zero. Then

ϑ (τ) =

(

mk

mk − 1

)m
(

0
ω
)km

+ o (1)
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at τ → +∞.
And by (60) derivatives of functions ϑ (τ) have limits at τ → +∞, which is

obviously equal to zero.

Consequently, it is necessary

lim
ηi→∞

((

a0 (τ)−
m

mk − 1

)

ϑ+ a1 (τ)ω
1−kLω − a2 (τ)ω + a3 (τ)ω

(1−k)p

)

= 0.

And we obtain the following algebraic equation

(

mk

mk − 1

)m
(

0
ω
)mk

− α2

(

1 +
1

m

)−m

E1−mk 0
ω = 0.

The best case:
0
ω = 1. From this equation, we get that

0
ω ≈ 1, thus we have

ϕ (ξ) = ϕ̄ (ξ) (1 + o (1)).

5. Conclusion

It is accomplished to acquire the Hamilton–Jacobi equation’s solution of the
type Zeldovich-Barenblatt. Using the comparison approach, it is possible to
study the finite speed properties of the Neumann problem for a parabolic equa-
tion with a gradient term. For both slow and fast diffusion cases, the asymptotic
behavior of the self-similar solution is examined. Using the modification energy
methods we established the secondary critical exponent. Moreover, analyzed
the asymptotic behavior of the solution (1) and a nonlinear algebraic equa-
tion is demonstrated to be satisfied by the coefficients in the main term of the
asymptotic of the solution.
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