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Abstract: Source separation is important in audio processing. This research
focuses on musical instrument source separation. The methods used are In-
terpolative Decomposition (ID), Nonnegative Matrix Factorisation (NMF) and
Convolutive Matrix Factorisation (CNMF). These three matrix factorisations
are simple algorithms used for extracting features for image processing. The
performances of NMF, CNMF and ID are compared when applying them to mu-
sical instrument source separation. Signal-to-noise ratio, Similarity Index and
Residual Energy are used to measure the performance of each method. Nu-
merically, Nonnegative Matrix Factorisation with Kullback Leibler divergence
is found to have performed better. However, in theory, the Itakura-Saito di-
vergence variant of NMF and CNMF is recommended for solving music-related
source separation.
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1. Introduction

Signal processing is a sub-field of electrical engineering. In the real world, we
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can represent images, audio, videos and vibrations in signals and this problem
is known as audio compression, speech recognition, source separation, etc. In
this paper, we investigate the method of performing the signal audio source
separation and the musical instrument data is chosen as the signal audio data.
Source separation is a method to recover two or more audio from the mixed
audio. Hence, the signal audio source separation formulation is shown below

y(t) = x;(t),

J=1

where y(t) denotes the mixed audio signal, z;(¢) denotes the j original audio
signals in the mixed audio signal where j = 1,2,..., N and NN takes the posi-
tive integer values. We also can represent the audio signal in matrix form by
using the Short-Time Fourier Transform (STFT) as in [3]. Therefore, we apply
matrix factorisation to solve the musical instrument source separation problem.
We choose Nonnegative Matrix Factorisation (NMF), Convolutive Nonnegative
Matrix Factorisation (CNMF) and Interpolative Decomposition (ID). Then,
we apply the matrix factorisation to the musical instrument source separation
problem to compare the performance of each method in solving that problem.

2. Related works

Back in 1994, Paatero and Tapper introduced the Positive Matrix Factorisation
[20], and later it is a well-known method after Lee and Seung popularised it and
it is called Nonnegative Matrix Factorisation (NMF) [6]. NMF splits a matrix
A into W and H to compute an approximated matrix A. In order to calculate
W and H, multiplicative updates rules are proposed by [6]. This mentioned
NMF is categorised as Basic NMF and there are other NMF methods which
were reviewed in [26].

NMF has been applied in the field of source separation. NMF was used
to solve the real number domain until it was extended to the complex domain
where the combination of NMF and Sparse Coding were used [10]. In 2013,
positive semidefinite tensor factorisation (PSDTF) was proposed and it was
extended from NMF with IS divergence [15]. The proposed method can perform
audio separation directly in the time domain but the disadvantage is that the
computational time is expensive.

The methods previously mentioned are suitable for single-channel source
separation. Then, some researchers expand it to solve multi-channel source
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separation. [14] stated that humans and animals have two ears and can at-
tain information on the audio signal direction and location which is the idea
for multi-channel source separation. [24] extended the application of NMF in
solving the multi-channel source separation. Besides this, [2] proposed two
multi-channel models which are Expectation-maximisation (EM) and multi-
plicative update (MU) rules algorithm by using the convolutive mixing but the
computational cost is expensive.

Another researcher [13] suggested Hermitian positive semidefiniteness of a
matrix which is the same as nonnegativity, which is another extension of NMF
for solving the multi-channel source separation in the complex domain by setting
the EM algorithm as the cost function. [11] and [12] can only separate two audio
sources and their methods have difficulty to have good separated audio when
dealing with more than two audio sources. Hence, [13] proposed the bottom-
up clustering method with conditions where redundant spatial properties are
allowed then it can separate the three sources. The authors also mentioned
that the multi-channel algorithm and single-channel algorithm are quite similar
where both are iterative methods.

The disadvantage of NMF with multiplicative update rules is when solv-
ing the high-dimensional matrix the convergence rate reduces. [7] sees this
problem and suggested the first-order primal-duel algorithm for NMF with KL
divergence by using the Chambolle-Pock algorithm as the base. Thus the result
shows us that this method has a faster convergence rate as compared to the
traditional update rules [6] and alternating direction methods of multiplier [4].

Besides using the NMF method in source separation, some researchers also
use deep learning techniques in source separation. [25] suggested Conv-TasNet
in source separation and solving it in the time domain as there are some draw-
backs when solving it in the frequency-time domain. Another method that ap-
plies in the time domain is Wave-U-Net [5] which is improvised from U-Net [1]
which is used in the frequency-time domain. However, Wave-U-Net has a better
performance based on their result. [18] suggested the multi-scale multi-band
densenets modified from [8]. Normally, densenets are used in image processing
and have good performance, hence the authors make some modifications to the
method to apply in musical source separation.
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3. Matrix factorisation
3.1. Nonnegative Matrix Factorisation (NMF)

Lee and Seung [6] defined NMF as a technique for splitting a matrix A into
W € R™* and H € R*¥*™ where rank, k, is 0 < k < min(n,m), ie., A ~
A" = WH, where all the entries in W and H are non-negative and A’ is an

approximated matrix of A calculated by using the smaller dimension matrices
W and H.

3.2. Convolutive Nonnegative Matrix Factorisation (CNMF)

CNMF is an extension of NMF using the convolutive structure and can capture
the short-term temporal dependencies in the time series data [19]. The structure
of the CNMF is shown below [21],

r-1 t—
A=A =) W) H,
t=0

where A € R™ ™ is the input audio, W (t) € R™*¥ is the basis and H € RF*" ig
the coefficient matrix of rank k&, 0 < k < min(n, m). All the entries in A, W (t)

t—

and H are positive. On the other hand, the operator () shifts the columns of
the matrix ¢ steps to the right.

3.3. Interpolative Decomposition (ID)

ID is a matrix factorisation method using numerical analysis to compute the
factorised matrix. ID preserves the structure of the matrix such as sparsity and
nonnegativity whereas truncated Singular Value Decomposition is not able to.
Thus, Advani and O’Hagan [23] defined it as given A € R™*™ then factorised it
into C' € R™*¥ whose columns are chosen from the columns of A, and Z € RF*™
where the rank, &, is 0 < k < min(n,m).

4. Methodology, results and discussion
4.1. Musical instrument audio datasets

In this research, we use two different sets of mixture audio datasets to test the
algorithm. The first mixture of musical instrument audio consists of a drum
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and a guitar extracted from different audio [9]. The mixture is done manually.
This dataset is known as a “simple music datasets”.

The second mixture of musical instrument datasets also consists of a drum
and a guitar extracted from the song “Beat it” [16] by using MIDI software
[27]. This dataset is known as a “complex music datasets”.

4.2. Experimental steps

First, we import the signal data using librosa [3]. Then we perform Short-Time
Fourier Transform (STFT) via librosa [3] to transform the imported signal
data into a matrix representation. Next, we find the rank, k, using principal
component analysis (PCA) and perform the matrix factorisation to get A =~
WH. Then, we can extract the individual component [ by taking the outer
product of the [ columns of the W and [ rows of the H and perform the inverse
STFT to listen to the audio sound for all [ = 1,2,...,k. Next, we categorise
the [ individual components into drum or guitar. Finally, we measure the
performance using signal-to-noise (SNR) [17], similarity index (SI) [22] and
residual energy (RE) [22].

4.3. Computational time

Time is important to determine which algorithms are fast, as society needs fast
algorithms to solve real-world problems. Hence, we plot the rank vs time graph.
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(a) Simple Music Datasets. (b) Complex Music Datasets.

Figure 1: Computational time of each method.
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Figure 1 shows the computational time needed for each rank in both simple
and complex music datasets. Simple music datasets have a shorter music audio
hence it has a smaller matrix as compared to complex music datasets. Due to
the difference in size, we observe that the y-axis in Figure 1(a) is larger than
the y-axis in Figure 1(b).

Next, we look into Figure 1(a) and we categorise the methods into mul-
tiplicative updates-based methods and numerical-based methods. Only ID is
the numerical-based method while others are the multiplicative updates-based
methods. We can clearly see that those multiplicative updates-based methods
require more computational time compared to the numerical-based methods.
We also observe that NMF-ED has higher computational time as compared to
other methods. On the other hand, the CNMF methods’ computational time
is similar for CNMF-ED, CNMF-KL and CNMF-IS, slightly higher than NMF-
KL and NMF-IS. We also observe that ID computational time does not increase
when the rank increases.

Figure 1(b) shows that NMF-IS computational time is the highest when
rank > 7 followed by the CNMF-ED, CNMF-KL and CNMF-IS. On the other
hand, NMF-ED has a low computational time but there are sudden increases at
rank = 25 because of the initialise values of W and H is far from the convergence
point, thus it required more computational time and iterations. While NMF-
KL has a stable computational time. Then, we observe that ID computational
time does not affect by the increase in ranks. Hence, this shows the advantages
of ID in factorising a larger dimension matrix.

5. Convergence rate

The purpose to study the convergence rate is to see how fast the method con-
verges to a value and the patterns of the convergence line. In NMF, we use the
equation below to calculate the loss value between the original audio and the
separation audio:
(Xo - er)2

(Xo)2

Error =

where X, denotes the original signal spectrogram and X,d denotes the sepa-
rated audio. On the other hand, the loss value of CNMF is directly obtainable
from the algorithm.

From Figure 2 and Figure 3, we observe that they have almost similar
convergence patterns where they converge to a value except for CNMF-IS. From
both Figure 2(a) and Figure 3(a), we observe that NMF-ED, NMF-KL and
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Figure 3: Convergence Rate for Complex Music Datasets.
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NMFEF-IS continue to converge after 100 iterations. Thus, a stopping condition
is needed. Another observation is that NMF-IS has a minimum point that the
other does not have. When we enlarge the convergence rate of CNMF-ED and
CNMF-KL in Figure 2(b) and Figure 3(b), we observe that they have the same
convergence pattern and rate of convergence is faster than the NMF method.
As for the case CNMF-IS in Figure 2(a) they have a similar pattern as NMF-IS
but in Figure 3(a) they return the “nan” value in Python for CNMF-IS.

5.1. Performance of different methods in musical instrument audio
source separation

In this section, we discuss the performance of NMF, CNMF and ID applied in
both simple audio datasets and complex audio datasets. We start with simple
audio datasets.

Similarity Index Residual Energy

___________

IS CNMF-ED CNMF-KL CNMF-IS NMFED NMFKL  NMFIS  CNMi CNMFIS NMFED NMFKL NMFIS CNMFED CNMFKL CNMFIS D

Figure 4: Performance measurement of methods apply in simple
audio datasets.

From Figure 4(a) and Figure 4(b), it is hard to determine which methods
have a better performance. Thus, we first look at Figure 4(c) and we observe
that there are small RE values on separated guitar audio among all the methods.
On the other hand, as for separated drum audio, CNMF-ED has a lower RE
value followed by CNMF-KL and all the NMF methods. Figure 4(b) and we can
exclude the NMF-IS as it has a lower SI value compared to CNMF-ED, CNMF-
KL, NMF-ED and NMF-KL. From Figure 4(a), we can say that CNMF-ED has
a better performance but in Figure 4(b) the SI value of CNMF-ED is lower than
NMF-ED and NMF-KL. Thus, this statement also applied to CNMF-KL. From
this, we can conclude NMF-KL has better performance as compared to NMF-
ED as it has a higher SI value in the separated guitar audio and both of them
have similar values in both SNR and RE values.
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Next, we look into the matrix factorisation applied in complex audio datasets.
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Figure 5: Performance measurement of methods apply in complex
audio datasets.

Figure 5(c), we notice that both NMF-KL and CNMF-KL have a lower
RE value even though the separated guitar audio RE value is a little bit high
but not the highest. We also can consider NMF-ED as the top 3 best per-
formance as it has a low RE value in separated guitar audio. Figure 5(b) we
observe that NMF-KL have a higher SI value for separated drum compared to
NMF-ED and CNMF-KL but the second highest SI value in separated guitar.
Hence, we observe the same pattern in 5(a). Numerically, NMF-KL has better
performance.

There is some information which the numerical value is not able to tell us
and we need to hear the audio. In complex datasets, there is the cymbal sound
in the drum audio, but NMF-ED and CNMF-ED are not able to reproduce the
sound. On the other hand, NMF-KL and CNMF-KL are not able to when the
rank is 11 but when the rank is increased to 19 the sound can be reproduced.
As for NMF-IS and CNMF-IS, they possess the scale invariance property which
can detect the cymbal sound.

Next, we look into the Interpolative Decomposition (ID) method in Figures
4 and 5, which show that the ID does not perform well in the musical instrument
source separation. It may be the cause of choosing the columns of the original
matrix randomly, A to be the columns of C', and A =~ C'Z is the structure of 1D.
Sometimes, the chosen columns contain duplicated information and unwanted
information to be the columns of C.
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6. Conclusion

In this paper, we compare the performance of NMF, CNMF and ID numerically
instead of listening to identify which has better performance. Asthe human ears
are not sensitive in determining the performance when there are high similarities
between the separated audio and original audio. The numerical result shows us
that NMF-KL performs better compared to other methods in both simple audio
datasets and complex audio datasets. On the other hand, it is recommended to
use the [takura-Saito divergence variant of NMF and CNMF to solve the music-
related source separation problem as it processes the scale invariance properties.
The ID performs the worst in solving the problem and some modification is
needed to solve musical instrument source separation. On the other hand,
the computational time of ID is fast when computing large matrix dimensions
compared to other methods.

In future, we can increase the number of musical instruments to three or
more to test that algorithm using matrix factorisation. There are some limita-
tions of the algorithm where the original audio sound must be known, but in
real life, the original audio may not be known.
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