PRESERVER OF SOME SPECTRAL DOMAINS
OF PRODUCT OPERATORS

Abstract

Let $B(X)$ be the algebra of all bounded linear operators on infinite-dimensional complex Banach space $X$. For $T \in B(X)$ and $i \in \{1,2,3\}$, let $\sigma_{i}(T)$ denote any one of the semi-Fredholm domain, the Fredholm domain and the Weyl domain in the spectrum. We prove that if two maps $\varphi_{1}$ and $\varphi_{2}$ from $B(X)$ onto $B(X)$ satisfy

\begin{displaymath}\sigma_{i}(\varphi_{1}(T)\varphi_{2}(S))= \sigma_{i}(TS)\end{displaymath}

for all $T, S \in B(X)$, then either:
(1) there is a bounded linear operator $A:X\rightarrow X$ such that $\varphi_{1}(T) = AT(\varphi_{2}(I)A)^{-1}$ and $\varphi_{2}(T) =\varphi_{2}(I)ATA^{-1}$ for all $T \in B(X)$, or
(2) there is a bounded linear operator $A:X^{\ast}\rightarrow X$ such that $\varphi_{1}(T) = AT^{\ast}(\varphi_{2}(I)A)^{-1}$ and $\varphi_{2}(T) =\varphi_{2}(I)AT^{\ast}A^{-1}$ for all $T \in B(X)$. Where $I$ is identity operator on $X$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 4
Year: 2023

DOI: 10.12732/ijam.v36i4.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Gonzalez, M. Mbekhta, Linear maps that preserve semi-Fredholm operators acting on Banach spaces, Acta Sci Math., 84, No 12 (2018), 137-149.
  2. [2] S. Hajighasemi, S. Hejazian, Maps preserving some spectral domains of operator products, Linear Multilinear Alg., (2020) 2367-2381.
  3. [3] M. Mbekhta, Linear maps preserving the set of Fredholm operators, Proc Amer Math Soc., 135, No 11 (2007), 3613-3619.482 R. Parvinianzadeh
  4. [4] M. Mbekhta, P. Semrl, Linear maps preserving semi-Fredholm operators and generalized invertibility, Linear Multilinear Alg., 57, No 1 (2009), 55-64.
  5. [5] M. Omladic, P. Semrl, Additive mappings preserving operators of rank one, Linear Algebra Appl., 182 (1993), 239-256.
  6. [6] W. Shi, G. Ji, Additive maps preserving the semi-Fredholm domain in spectrum, Ann Funct Anal., 7 (2016), 254-260.