

**BLOCK INVERSION ON \wp WORDS WITH
ZERO PALINDROMIC DEFECT**

R. Krishna Kumari¹ \ddagger , K. Janaki², R. Arulprakasam³

¹ Career Development Centre
College of Engineering and Technology
SRM Institute of Science and Technology
Kattankulathur-603203, Tamilnadu, INDIA

² Department of Mathematics
Saveetha Engineering College
Saveetha Nagar, Thandalam
Chennai-602105, Tamilnadu, INDIA

³ Department of Mathematics
College of Engineering and Technology
SRM Institute of Science and Technology
Kattankulathur-603203, Tamilnadu, INDIA

Abstract: The role of \wp words and inversions in molecular biology led to a unified study of inversions on \wp words. In this paper, we use a generalization of the concept of inversion termed as block inversion on finite rich \wp words. A comparison of block inversion on finite total words and on finite \wp words is made. We conclude that the total number of \wp words in the block inversion set of a finite rich \wp word of length n is strictly less than 2^{n-1} .

AMS Subject Classification: 68Q45, 68R15

Key Words: conjugates; \wp words; palindromes; primitivity

1. Introduction

Combinatorics on words and the study of formal languages are related since

Received: March 27, 2023

© 2023 Academic Publications

\ddagger Correspondence author

both fields investigate different aspects of words [10, 16]. Recent molecular genetic research have suggested that inversion (or reversal) operation is one of the vital operations on DNA sequences [12]. Inversion is a concept of rearrangement of a word. If a word x exists as the mirror image of another word y then x is the inversion of y . From the formal language theory point of view, many biological operations such as string matching and alignment problems consider hairpin inversion, pseudo-inversion and non-overlapping inversion [4, 11, 19]. The authors in [7] proved that context-free as well as regular languages are closed under the inversion but not closed under the iterated inversion. The decidability and closure properties of some language classes with respect to hairpin inversion was scrutinized in [5, 6]. In the literature of combinatorics of words, block inversion operation is used for many combinatorial manipulations [9, 17]. Block inversion of a word is a process of partitioning the word into blocks instead of letters and writing it in the reverse order. Sorting by block reversal problem make use of this operation.

Partial words are words with holes and are considered in gene comparisons [8, 14]. For instance, orientation of two DNA sequences can be seen as construction of two compatible \wp words. In DNA computation, DNA strands are considered as finite words and are utilized for encoding information. While encoding, some parts of information may be unseen or missing. These parts are revealed by using \wp words that represent the positions of the missing symbols in a word. The holes present in a partial word over an alphabet does not belong to that alphabet but remains as a standby symbol for the unknown letter. The study of \wp words was initiated in [1] and the study was later extended by Blanchet Sadri [2, 3]. Here, we use a generalisation of the concept of inversion termed as block inversion on finite \wp words. We study the significant differences between block inversion on finite total words and block inversion on finite \wp words. We show that the total count of words in the block inversion set of a finite total word of length n is less than or equal to 2^{n-1} but the total count of words in the block inversion set of a finite rich \wp word of length n is strictly less than 2^{n-1} . In Section 2 the fundamental definitions pertaining to \wp words and inversions are recalled. The block inversion operation on rich \wp words explained in Section 3 and finally in Section 4, conclusion and future work are discussed.

2. Preliminaries

Here, we briefly recall the standard notations with respect to \wp words.

Let the set \mathbb{A} termed as *alphabet* represent a non-empty finite set of symbols

(or letters). A *total word* or *string* is a sequential arrangement of letters over \mathbb{A} . The set of all total words from \mathbb{A} is denoted by \mathbb{A}^* . $\mathbb{A}^+ = \mathbb{A}^*$ excluding the empty word $\{\lambda\}$. A language L is a subset of \mathbb{A}^* . Let $w \in \mathbb{A}^*$, by $|w|$ we denote the length of the word w . $Alph(w)$ denotes the set of all letters in w . A finite word w is called a *palindrome* if $w = w^R$ where w^R is the *reversal (mirror image)* of w . A *partial word* is a word made up of a number of holes or wild card letters (denoted as \diamond) present anywhere in the sequence of letters of the word. The symbol $\diamond \notin \mathbb{A}$, but remains as a standby symbol for the unknown letter, for instance, $u = aa\diamond b$ is a partial word with $|u| = 4$. Formally, a partial word u with $|u| = n$ over \mathbb{A} is a partial function $u : \{0, 1, 2 \dots, n-1\} \rightarrow \mathbb{A}$. For $0 \leq j < n$, if $u(j)$ is defined, then we say j belongs to the domain of u (defined as $d(u)$), otherwise j belongs to the set of holes (defined as $h(u)$). The following definition is used in order to represent the locations of the holes of the \wp words. u_\diamond representing the companion of u is the total function $u_\diamond : \{0, 1, 2 \dots, n-1\} \rightarrow \mathbb{A}_\diamond = \mathbb{A} \cup \{\diamond\}$ defined by

$$u_\diamond(j) = \begin{cases} u(j) & \text{if } j \in d(u), \\ \diamond & \text{if } j \in h(u). \end{cases}$$

A finite partial word p is primitive (non-periodic) if a finite partial word q exists such that $p = q^m$, for all $m \geq 2$.

3. Block Inversion of a Rich \wp word

The inversion of a non-empty finite total word of length k say $u_1u_2\dots u_k$ such that $u_m \in \mathbb{A}_\diamond$ for all m is the word derived by partitioning u into k non-empty segments and listing them in the reverse order as $u_k\dots u_2u_1$. For instance the inversion of the total word aab is baa . The inversion operation on a finite rich \wp word is not similar to the inversion of a finite word since the presence of \diamond in a rich \wp word cannot exist as a non-empty segment without a companion while partitioning. In order to fulfill this gap we use block inversion operation on finite rich \wp word which shows variation from the classical definition of block inversion of finite total word. Here we study the palindromic properties along with block inversion operation on rich \wp words. The empty word λ is regarded as a palindrome.

Definition 1. A factor p_\diamond of a partial word u_\diamond over \mathbb{A}_\diamond is called a partial palindromic proper factor if p_\diamond is compatible with its reversal (denoted by

$p_\diamond \uparrow p_\diamond^R$). The set of all non-empty partial palindromic proper factors of u_\diamond is denoted by $PPPF(u_\diamond)$.

Example 2. Consider a partial word $u_\diamond = abba\diamond a$ over $\mathbb{A}_\diamond = \{a, b\} \cup \{\diamond\}$. The palindromic factors of u_\diamond are

$$\{\lambda, a, b, bb, a\diamond, \diamond a, ba\diamond, a\diamond a, abba\}.$$

Here the factors $\{a\diamond, \diamond a, ba\diamond, a\diamond a\}$ are termed as partial palindromic factors.

Definition 3. Any partial word over \mathbb{A}_\diamond with length n is a rich partial word if it has at least n distinct partial palindromic proper factors.

Example 4. Consider a partial word $u_\diamond = aa\diamond ba$ over $\mathbb{A}_\diamond = \{a, b\} \cup \{\diamond\}$ with $|u_\diamond| = 5$.

The set of all distinct palindromic proper factors of u_\diamond are

$$\{\lambda, a, b, aa, a\diamond, \diamond b, aa\diamond, \diamond ba, bab, a\diamond ba\}.$$

Among the above set, the set of all distinct partial palindromic factors of u_\diamond are

$$\{a\diamond, \diamond b, aa\diamond, \diamond ba, a\diamond ba\}.$$

Here the number of distinct partial palindromic proper factors is equal to $|u_\diamond|$. Hence u_\diamond is a rich partial word.

Example 5. Consider a partial word $v_\diamond = \diamond ababb$ with length $|v_\diamond| = 6$ over $\mathbb{A}_\diamond = \{a, b\} \cup \{\diamond\}$. Then the partial palindromic proper factors of v_\diamond are

$$v_\diamond = \{\diamond a, \diamond ab, \diamond abab\}.$$

Here the number of distinct partial palindromic proper factors is less than $|v_\diamond|$. Hence v_\diamond is not a rich partial word.

Definition 6. Consider a finite alphabet $\mathbb{A}_\diamond = \mathbb{A} \cup \{\diamond\}$. For any integer m , let $u_\diamond, I_m \in \mathbb{A}_\diamond^+$ where u_\diamond represent the rich word over \mathbb{A}_\diamond ; I_m denotes non-empty blocks of a rich word in \mathbb{A}_\diamond^+ such that

$$|I_m| \geq \begin{cases} 1 & \text{if } \diamond \notin I_m, \\ 2 & \text{if } \diamond \in I_m. \end{cases}$$

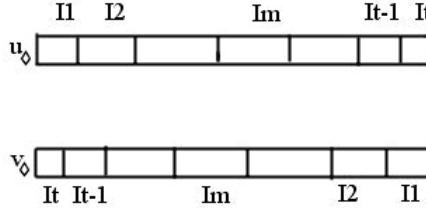


Figure 1: For $u_\diamond \in \mathbb{A}_\diamond^+$, $v_\diamond \in I_B(u_\diamond)$

The block inversion of u_\diamond represented by $I_B(u_\diamond)$ is the set

$$I_B(u_\diamond) = \{I_p I_{p-1} \dots I_2 I_1 : u_\diamond = I_1 I_2 \dots I_{p-1} I_p, p \geq 1\}.$$

A rich \wp word u_\diamond can be partitioned at most of $|u_\diamond|$ blocks. The block inversion in $L_\diamond \subseteq \mathbb{A}_\diamond^+$ which is denoted by $I_B(L_\diamond)$ is

$$I_B(L_\diamond) = \bigcup_{u \in L_\diamond} I_B(u_\diamond).$$

Example 7. Assume $u_\diamond = ab\diamond b$ over $\mathbb{A}_\diamond = \{a, b\} \in \{\diamond\}$. Then

$$I_B(u_\diamond) = \{ab\diamond b, \diamond bba, bb\diamond a, b\diamond ba, bab\diamond, \diamond bab\}.$$

Theorem 8. [17] Assume a total word $x \in \mathbb{A}^+$ with $|x| = n$. Then $|I_B(x)| = 2^{n-1}$ iff $|Alph(x)| = n$.

Theorem 9. Assume a rich \wp word $u_\diamond \in \mathbb{A}_\diamond^+$ and $|u_\diamond| = n$. Then $|I_B(u_\diamond)| < 2^{n-1}$ iff $|Alph(u_\diamond)| \leq n$.

Proof. Consider $u_\diamond \in \mathbb{A}_\diamond^+$ and $|u_\diamond| = n$ such that $|I_B(u_\diamond)| = 2^{n-1}$. If $a \in \mathbb{A}_\diamond^+$ is a letter, then the number of occurrences of a in the rich \wp word u_\diamond is denoted by $|u_\diamond|_a$. Let $|u_\diamond|_a \geq 1$ and $|u_\diamond|_\diamond \geq 1$. Also let $a \in Alph(u_\diamond)$ and $\diamond \in Alph(u_\diamond), \diamond \notin \mathbb{A}$. There are four cases to consider:

1. Assume that $|u_\diamond|_a > 1$ and $|u_\diamond|_\diamond > 1$. Then for some $x, y, z \in \mathbb{A}^*$, $u_\diamond = axay\diamond z\diamond$. For $I_1 = axa, I_2 = y, I_3 = \diamond z\diamond$, we get $I_3 I_2 I_1 = \diamond z\diamond yaxa \in I_B(u_\diamond)$. But we do not get $J_7 J_6 J_5 J_4 J_3 J_2 J_1 = \diamond z\diamond yaxa \in I_B(u_\diamond)$ for $J_1 = a, J_2 = x, J_3 = a, J_4 = y, J_5 = \diamond, J_6 = z, J_7 = \diamond$ since \diamond without a companion does not exist as a block. Since $J_7 J_6 J_5 J_4 J_3 J_2 J_1$ cannot exist, then $|I_B(u_\diamond)| = 2^{|u_\diamond|-1}$ is a contradiction.

2. Assume that $|u_\diamond|_a = 1$ and $|u_\diamond|_\diamond > 1$. Then for some $x, y, z \in \mathbb{A}^*$, $u_\diamond = xay\diamond z\diamond$. For $I_1 = x, I_2 = a, I_3 = y, I_4 = \diamond z\diamond$, we get $I_4I_3I_2I_1 = \diamond z\diamond yax \in I_B(u_\diamond)$. But we do not get $J_6J_5J_4J_3J_2J_1 = \diamond z\diamond yax \in I_B(u_\diamond)$ for $J_1 = x, J_2 = a, J_3 = y, J_4 = \diamond, J_5 = z, J_6 = \diamond$. Thus $I_4I_3I_2I_1 \neq J_6J_5J_4J_3J_2J_1$, then $|I_B(u_\diamond)| < 2^{|u_\diamond|-1}$.
3. Assume that $|u_\diamond|_a > 1$ and $|u_\diamond|_\diamond = 1$. Then $u_\diamond = axay\diamond z$ for some $x, y, z \in \mathbb{A}^*$. For $I_1 = axa, I_2 = y, I_3 = \diamond z$, we get $I_3I_2I_1 = \diamond zyaxa \in I_B(u_\diamond)$. But we do not get $J_6J_5J_4J_3J_2J_1 = \diamond zyaxa \in I_B(u_\diamond)$ for $J_1 = a, J_2 = x, J_3 = a, J_4 = y, J_5 = z, J_6 = \diamond$ since \diamond without a companion does not exist as a block. Since $J_6J_5J_4J_3J_2J_1$ cannot exist, then $|I_B(u_\diamond)| = 2^{|u_\diamond|-1}$ is a contradiction.
4. Assume that $|u_\diamond|_a = 1$ and $|u_\diamond|_\diamond = 1$. Then for some $x, y, z \in \mathbb{A}^*$, $u_\diamond = xay\diamond z$. For $I_1 = x, I_2 = a, I_3 = y, I_4 = \diamond z$, we get $I_4I_3I_2I_1 = \diamond zyax \in I_B(u_\diamond)$. But we do not get $J_5J_4J_3J_2J_1 = \diamond zyax \in I_B(u_\diamond)$ for $J_1 = x, J_2 = a, J_3 = y, J_4 = z, J_5 = \diamond$. Since $J_5J_4J_3J_2J_1$ cannot exist, then $|I_B(u_\diamond)| = 2^{|u_\diamond|-1}$ is a contradiction.

Thus, for each $a \in \text{Alph}(u_\diamond)$ and $\diamond \in \text{Alph}(u_\diamond), \diamond \notin \mathbb{A}$, $|u_\diamond|_a \geq 1$ and $|u_\diamond|_\diamond \geq 1$, i.e, $|\text{Alph}(u_\diamond)| \leq n$ if $|I_B(u_\diamond)| < 2^{n-1}$.

Conversely, consider u_\diamond such that for each $a \in \text{Alph}(u_\diamond)$ and $\diamond \in \text{Alph}(u_\diamond), \diamond \notin \mathbb{A}$, $|u_\diamond|_a \geq 1$ and $|u_\diamond|_\diamond \geq 1$. For $1 \leq k < |u_\diamond|$, the rich \wp word u_\diamond can be divided into k non-empty blocks in $\binom{|u_\diamond|-1}{k-1}$ distinct ways. Since all the letters in u_\diamond are distinct, the block inversion of such a rich \wp word contains $2^{|u_\diamond|-1}$ elements. Hence, the proof. \square

Example 10. Consider the rich \wp words $u_\diamond^1 = aa\diamond b\diamond, u_\diamond^2 = ca\diamond b\diamond, u_\diamond^3 = aba\diamond, u_\diamond^4 = ab\diamond c$ over $\mathbb{A}_\diamond = \{a, b, c\} \cup \{\diamond\}$ with $|u_\diamond^1| = 5, |u_\diamond^2| = 5, |u_\diamond^3| = 4$ and $|u_\diamond^4| = 4$. Here $|\text{Alph}(u_\diamond^1)| = 3, |\text{Alph}(u_\diamond^2)| = 4, |\text{Alph}(u_\diamond^3)| = 3$ and $|\text{Alph}(u_\diamond^4)| = 4$.

$$\begin{aligned}
 I_B(u_\diamond^1) &= \{aa\diamond b\diamond, \diamond b\diamond aa, b\diamond a\diamond a, b\diamond aa\diamond\} \\
 I_B(u_\diamond^2) &= \{ca\diamond b\diamond, \diamond b\diamond ac, \diamond b\diamond ca, b\diamond a\diamond c, b\diamond ca\diamond\} \\
 I_B(u_\diamond^3) &= \{a\diamond ba, aba\diamond, a\diamond ab, ba\diamond a\} \\
 I_B(u_\diamond^4) &= \{ab\diamond c, \diamond cba, \diamond cab, b\diamond ca\}.
 \end{aligned}$$

Here

$$|I_B(u_\diamond^1)| = 4 < 2^{|u_\diamond|-1}$$

$$\begin{aligned}|I_B(u_{\diamond}^2)| &= 5 < 2^{|u_{\diamond}|-1} \\|I_B(u_{\diamond}^3)| &= 4 < 2^{|u_{\diamond}|-1} \\|I_B(u_{\diamond}^4)| &= 4 < 2^{|u_{\diamond}|-1}.\end{aligned}$$

A subset of the set $I_B(u_{\diamond})$ that considers rich \wp words with the inversion of minimum two non-empty blocks is termed as a proper block inversion.

Definition 11. The proper block inversion of u_{\diamond} denoted by $PI_B(u_{\diamond})$ is

$$PI_B(u_{\diamond}) = \{I_p I_{p-1} \dots I_2 I_1 : u_{\diamond} = I_1 I_2 \dots I_{p-1} I_p, p \geq 2\}.$$

The proper block inversion of $(u_{\diamond})_{\circ}$ denoted by $PI_B((u_{\diamond})_{\circ})$ is

$$PI_B((u_{\diamond})_{\circ}) = \{I_B(PI_B(u_{\diamond})) : u_{\diamond} = I_1 I_2 \dots I_{p-1} I_p, p \geq 2\}.$$

Example 12. Assume $u_{\diamond} = ac\diamond ca$ over \mathbb{A}_{\diamond} . Then

$$\begin{aligned}PI_B(u_{\diamond}) &= \{c\diamond caa, \diamond caac, caac\diamond, aac\diamond c, cac\diamond a, a\diamond cca, a\diamond cac, \\&\quad acac\diamond, ac\diamond ca, acc\diamond a, \diamond caca\}, \\PI_B((u_{\diamond})_{\circ}) &= \{c\diamond caa, \diamond caac, caac\diamond, aac\diamond c, cac\diamond a, a\diamond cca, a\diamond cac, \\&\quad acac\diamond, ac\diamond ca, acc\diamond a, \diamond caca, aacc\diamond, aa\diamond cc, acac\diamond, \\&\quad aca\diamond c, ca\diamond ca, c\diamond aca, ac\diamond ac, \diamond ccaa\}.\end{aligned}$$

Definition 13. A rich \wp word u_{\diamond} over \mathbb{A}_{\diamond} is called a block palindrome (denoted as b_{pal}) if u_{\diamond} exists as

$$u_{\diamond} = I_{-p} I_{-(p-1)} \dots I_{-1} I_0 I_1 \dots I_{(p-1)} I_p,$$

where $I_m, I_{-m} \in \mathbb{A}_{\diamond}^+$ and $I_m = I_{-m}$ for $1 \leq m \leq p$. Here $I_0 \in \mathbb{A}^*$ is the mid-block and it may or may not be a palindrome.

Remark 14. A palindromic rich \wp word is a b_{pal} formed by palindromic partitioning but the converse does not hold. For instance, the partial word $u_{\diamond} = bab\diamond b\diamond babb$ is not a palindrome but u_{\diamond} is a b_{pal} with palindromic partitioning $b | ab | \diamond b | \diamond b | ab | b$.

Remark 15. A unique representation of a rich \wp word as a b_{pal} is not a necessary condition.

Example 16. Consider $u_{\diamond} = b\diamond aab\diamond$ over $\mathbb{A}_{\diamond} = \{a, b\} \cup \{\diamond\}$. Here u_{\diamond} is a b_{pal} with palindromic partitioning $b\diamond | a | a | b\diamond$ as well as $b\diamond | aa | b\diamond$.

Theorem 17. For any rich \wp word $u_{\diamond} \in \mathbb{A}_{\diamond}^+$, $u_{\diamond} \in PI_B(u_{\diamond})$ iff u_{\diamond} is a b_{pal} .

Proof. Let the rich \wp word $u_{\diamond} \in PI_B(u_{\diamond})$. Then by Definition 13, there exists $I_m, I_{-m} \in \mathbb{A}_{\diamond}^+$ for $2 \leq m \leq p$ such that $u_{\diamond} = I_{-p}I_{-(p-1)}\dots I_{-1} = I_1\dots I_{(p-1)}I_p$. Let $|I_1| \leq |I_p|$, then we have the following cases:

1. If $|I_1| = |I_p|$, it is trivial that $u_{\diamond} \in PI_B(u)$ is a b_{pal} .
2. Let $|I_1| < |I_p|$. Then $I_p = I_1x$ for some $x \in \mathbb{A}^*$. We have

$$\begin{aligned} u_{\diamond} &= I_p I_{p-1} \dots I_2 I_1 \\ &= I_1 x I_{p-1} \dots I_2 I_1 \\ &= I_1 I_0 I_1 \text{ where } I_0 = x I_{p-1} \dots I_2. \end{aligned}$$

Thus u_{\diamond} is a b_{pal} .

Conversely, let u_{\diamond} be a b_{pal} . Then $u_{\diamond} \in PI_B(u_{\diamond})$ since $I_m = I_{-m}$ for $1 \leq m \leq p$. \square

Lemma 18. [3] For any non-empty rich \wp words u_{\diamond} and v_{\diamond} , the equality $u_{\diamond}v_{\diamond} = v_{\diamond}u_{\diamond}$ holds iff $u_{\diamond} = w_{\diamond}^i$ and $v_{\diamond} = w_{\diamond}^j$ for some positive integers i, j and rich \wp word w_{\diamond} .

Remark 19. For all integers $i, j \geq 1$, the rich \wp word u_{\diamond}^i is a palindrome iff u_{\diamond}^j is a palindrome.

Theorem 20. For any non-empty partial words u_{\diamond} and v_{\diamond} , the concatenation $u_{\diamond}v_{\diamond}$ is a b_{pal} iff both $u_{\diamond}, v_{\diamond}$ are powers of some b_{pal} w_{\diamond} .

Proof. Suppose $u_{\diamond}v_{\diamond}$ is a b_{pal} , by Definition 13 we have

$$\begin{aligned} u_{\diamond} &= \{I_{-p}I_{-(p-1)}\dots I_{-1}I_0I_1\dots I_{(p-1)}I_p\}, \\ v_{\diamond} &= \{I_{-q}I_{-(q-1)}\dots I_{-1}I_0I_1\dots I_{(q-1)}I_q\}, \end{aligned}$$

where $I_m, I_{-m}, I_n, I_{-n} \in \mathbb{A}_{\diamond}^+$ and $I_m = I_{-m}, I_n = I_{-n}$ for $1 \leq m \leq p$ and $1 \leq n \leq q$. Then we get

$$u_{\diamond}v_{\diamond} = \{I_{-p}I_{-(p-1)}\dots I_{(p-1)}I_pI_{-q}I_{-(q-1)}\dots I_{(q-1)}I_q\}$$

$$\begin{aligned}
&= \{I_q I_{(q-1)} \dots I_{-(q-1)} I_{-q} I_p I_{(p-1)} \dots I_{-(p-1)} I_{-p}\} \\
&= (u_\diamond v_\diamond)^R \\
&= (v_\diamond)^R (u_\diamond)^R \\
&= v_\diamond u_\diamond.
\end{aligned}$$

By Lemma 18 and Remark 19, we have that both u_\diamond, v_\diamond are powers of some block palindrome w_\diamond . Conversely, if $u_\diamond = w_\diamond^i$ and $v_\diamond = w_\diamond^j$, we have $u_\diamond v_\diamond = w_\diamond^{i+j}$, which is a b_{pal} by Remark 19. \square

The total count of total words in the block inversion set of a total word of length n is equal to 2^{n-1} . But it is not so, in the case of rich \wp words. The following theorem proves that the total count of rich \wp words in the block inversion set of a rich \wp word of length n is strictly less than 2^{n-1} .

Lemma 21. [10] *The count of palindromic segments of an integer n is $2^{\lfloor \frac{n}{2} \rfloor}$. Also,*

Count of palindromic segments of n with

$$\begin{cases} 2k+1 \text{ parts equals } \binom{\lceil \frac{n}{2} \rceil - 1}{k}, \\ 2k \text{ parts equals } \binom{\lceil \frac{n}{2} \rceil - 1}{k-1}. \end{cases}$$

Theorem 22. Assume u_\diamond to be a palindromic partial word with $|u_\diamond| = n$. Let $Pal(I_B(u_\diamond))$ denote the total number of palindromic words in $I_B(u_\diamond)$. Then

$$Pal(I_B(u_\diamond)) = \begin{cases} < 2^{\frac{n}{2}-1} & \text{if } n \text{ is even, } |Alph(u_\diamond)| = \frac{n}{2}, \\ < 2^{\frac{n-1}{2}-1} & \text{if } n \text{ is odd, } |Alph(u_\diamond)| = \frac{n+1}{2}. \end{cases}$$

Proof. Consider a palindromic rich \wp word u_\diamond with $|u_\diamond| = n$. The following two cases arises with respect to n .

Case 1 : Let n be even and $|Alph(u_\diamond)| = \frac{n}{2}$. By Lemma 23, all elements of $I_B(u_\diamond)$ with palindromic blocks are palindromes. Let $v_\diamond \in I_B(u_\diamond)$ be a palindrome with palindromic blocks $n_1 + n_2 + \dots + n_m + \dots + n_2 + n_1$. Since n is even, n_m is also even. This implies that palindromic blocks with an even number of parts forms v_\diamond . Then followed by the Theorem 17 and the Lemma 21, we get the total number of palindromic elements in $I_B(u_\diamond)$ less than $2^{\frac{n}{2}-1}$.

Case 2 : Let n be odd and $|Alph(u_\diamond)| = \frac{n+1}{2}$. This shows that a letter occurs once in the rich \wp word and also in the mid position of u_\diamond . Let $v \in I_B(u_\diamond)$ be a palindrome. The palindromic blocks of v_\diamond are of the form $n_1 + n_2 + \dots +$

$n_m + n_{m-1} + \dots + n_2 + n_1$. Then by Theorem 17, the total number of palindromic elements in $I_B(u_\diamond)$ is less than $2^{\frac{n+1}{2}-1}$. \square

Remark 23. If u_\diamond over \mathbb{A}_\diamond^+ is a palindromic rich \wp word then all elements of $I_B(u_\diamond)$ with palindromic partitions are palindromes.

4. Conclusion and Future Work

We extended block inversion operation on finite rich \wp words and also discussed the classification of palindromic words in the block inversion of a finite rich \wp word. In future, it would be interesting to study the combinatorial properties of finite \wp words using non-overlapping inversion and pseudo inversion operations.

References

- [1] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf, *Theor. Comput. Sci.*, **218**, No 1 (1999), 135–141.
- [2] F. Blanchet-Sadri, Primitive partial words, *Discrete Applied Mathematics*, **148** (2005), 195–213.
- [3] F. Blanchet-Sadri, *Algorithmic Combinatorics on Partial Words*, Discrete Mathematics and its Applications, CRC Press (2008).
- [4] D.J. Cho, Y.S. Han, S.D. Kang, H. Kim, S.K. Ko and K. Salomaa, Pseudo-inversion on formal languages, *Proceedings of the Unconventional Computation and Natural Computation* (2014), 93–104.
- [5] M. Daley, O.H. Ibarra and L. Kari, Closure and decidability properties of some language classes with respect to ciliate bio-operations, *Theor. Comput. Sci.*, **306**, No 1 (2003), 19–38.
- [6] M. Daley, L. Kari and I. McQuillan, Families of languages defined by ciliate bio-operations, *Theor. Comput. Sci.*, **320**, No 1 (2004), 51–69.
- [7] J. Dassow, V. Mitrana and A. Salomaa, Operations and language generating devices suggested by the genome evolution, *Theor. Comput. Sci.*, **270**, No 1 (2002), 701–738.

- [8] M.J. Fischer and M.S. Paterson, String matching and other products, In: *Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings* (1974), 113-125.
- [9] K. Goto, I. Tomohiro, H. Bannai and S. Inenaga, Block palindromes: a new generalization of palindromes, *String Processing and Information Retrieval, Springer International Publishing, Cham*, (2018), 183–190.
- [10] S. Heubach and T. Mansour, *Combinatorics of Compositions and Words*, Discrete Mathematics and its Applications, CRC Press (2009).
- [11] O.H. Ibarra, On decidability and closure properties of language classes with respect to bio-operations, *Proceedings of the 20th International Conference on DNA Computing and Molecular Programming* (2014), 148–160.
- [12] H. Kim and Y.S. Han, Non-overlapping inversion on strings and languages, *Theoret. Comput. Sci.*, **592** (2015), 9–22.
- [13] R. Krishna Kumari, R. Arulprakasam, P. Meenakshi and V.R. Dare, Circular partial words and arrays, *Proceedings of the International Symposium on Artificial Intelligence and Mathematics 2022 (ISAIM 2022), Fort Lauderdale, Florida, USA*, 2022.
- [14] R. Krishna Kumari, R. Arulprakasam and V.R. Dare, Combinatorial properties of Fibonacci partial words and arrays, *Journal of Discrete Mathematical Sciences and Cryptography*, **24**, No 4 (2021), 1007-1020.
- [15] L. Heged s and B. Nagy, Representations of circular words. *Proceedings 14th International Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary*, **151** (2014), 261–270.
- [16] M. Lothaire, *Combinatorics on Words*, Cambridge University Press, 1983.
- [17] K. Mahalingam, A. Maity, P. Pandoh and R. Raghavan, Block reversal on finite words, *Theoret. Comput. Sci.*, Preprint (2021).
- [18] B. Rittaud, L. Vivier, Circular words and Applications, *Proceedings of Words 2011, Electronic Proceedings in Theoret. Comput. Sci.*, **63** (2011), 31–36.
- [19] M. Schoniger, M. Waterman, A local algorithm for DNA sequence alignment with inversions, *Bull. Math. Biol.*, **54** (1992), 521–536.

650