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Abstract: The role of ℘words and inversions in molecular biology led to a
unified study of inversions on ℘words. In this paper, we use a generalization
of the concept of inversion termed as block inversion on finite rich ℘words.
A comparison of block inversion on finite total words and on finite ℘words is
made. We conclude that the total number of ℘words in the block inversion set
of a finite rich ℘word of length n is strictly less than 2n−1.
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1. Introduction

Combinatorics on words and the study of formal languages are related since
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both fields investigate different aspects of words [10, 16]. Recent molecular ge-
netic research have suggested that inversion (or reversal) operation is one of the
vital operations on DNA sequences [12]. Inversion is a concept of rearrange-
ment of a word. If a word x exists as the mirror image of another word y then
x is the inversion of y. From the formal language theory point of view, many
biological operations such as string matching and alignment problems consider
hairpin inversion, pseudo-inversion and non-overlapping inversion [4, 11, 19].
The authors in [7] proved that context-free as well as regular languages are
closed under the inversion but not closed under the iterated inversion. The
decidability and closure properties of some language classes with respect to
hairpin inversion was scrutinized in [5, 6]. In the literature of combinatorics of
words, block inversion operation is used for many combinatorial manipulations
[9, 17]. Block inversion of a word is a process of partitioning the word into
blocks instead of letters and writing it in the reverse order. Sorting by block
reversal problem make use of this operation.

Partial words are words with holes and are considered in gene comparisons
[8, 14]. For instance, orientation of two DNA sequences can be seen as con-
struction of two compatible ℘words. In DNA computation, DNA strands are
considered as finite words and are utilized for encoding information. While en-
coding, some parts of information may be unseen or missing. These parts are
revealed by using ℘words that represent the positions of the missing symbols
in a word. The holes present in a partial word over an alphabet does not be-
long to that alphabet but remains as a standby symbol for the unknown letter.
The study of ℘words was initiated in [1] and the study was later extended by
Blanchet Sadri [2, 3]. Here, we use a generalisation of the concept of inversion
termed as block inversion on finite ℘words. We study the significant differ-
ences between block inversion on finite total words and block inversion on finite
℘words. We show that the total count of words in the block inversion set of a
finite total word of length n is less than or equal to 2n−1 but the total count of
words in the block inversion set of a finite rich ℘word of length n is strictly less
than 2n−1. In Section 2 the fundamental definitions pertaining to ℘words and
inversions are recalled. The block inversion operation on rich ℘words explained
in Section 3 and finally in Section 4, conclusion and future work are discussed.

2. Preliminaries

Here, we briefly recall the standard notations with respect to ℘words.

Let the set A termed as alphabet represent a non-empty finite set of symbols
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(or letters). A total word or string is a sequential arrangement of letters over
A. The set of all total words from A is denoted by A

∗. A
+ = A

∗excluding
the empty word {λ}. A language L is a subset of A∗. Let w ∈ A

∗, by |w| we
denote the length of the word w. Alph(w) denotes the set of all letters in w. A
finite word w is called a palindrome if w = wR where wR is the reversal (mirror
image) of w. A partial word is a word made up of a number of holes or wild
card letters (denoted as ♦) present anywhere in the sequence of letters of the
word. The symbol ♦ /∈ A, but remains as a standby symbol for the unknown
letter, for instance, u = aa♦b is a partial word with |u| = 4. Formally, a partial
word u with |u| = n over A is a partial function u : {0, 1, 2 · · · , n − 1} → A.
For 0 ≤ j < n, if u(j) is defined, then we say j belongs to the domain of
u (defined as d(u)), otherwise j belongs to the set of holes (defined as h(u)).
The following definition is used in order to represent the locations of the holes
of the ℘words. u♦ representing the companion of u is the total function u♦ :
{0, 1, 2 · · · , n− 1} → A♦ = A ∪ {♦} defined by

u♦(j) =

{

u(j) if j ∈ d(u),

⋄ if j ∈ h(u).

A finite partial word p is primitive (non-periodic) if a finite partial word q exists
such that p = qm, for all m ≥ 2.

3. Block Inversion of a Rich ℘word

The inversion of a non-empty finite total word of length k say u1u2...uk such
that um ∈ A♦ for all m is the word derived by partitioning u into k non-empty
segments and listing them in the reverse order as uk...u2u1. For instance the
inversion of the total word aab is baa. The inversion operation on a finite rich
℘word is not similar to the inversion of a finite word since the presence of ♦ in
a rich ℘word cannot exist as a non-empty segment without a companion while
partitioning. In order to fulfill this gap we use block inversion operation on
finite rich ℘word which shows variation from the classical definition of block
inversion of finite total word. Here we study the palindromic properties along
with block inversion operation on rich ℘words. The empty word λ is regarded
as a palindrome.

Definition 1. A factor p♦ of a partial word u♦ over A♦ is called a partial
palindromic proper factor if p♦ is compatible with its reversal (denoted by
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p♦ ↑ pR♦ ). The set of all non-empty partial palindromic proper factors of u♦ is
denoted by PPPF (u♦).

Example 2. Consider a partial word u♦ = abba♦a over A♦ = {a, b}∪{♦} .
The palindromic factors of u♦ are

{λ, a, b, bb, a♦,♦a, ba♦, a♦a, abba} .

Here the factors {a♦,♦a, ba♦, a♦a} are termed as partial palindromic factors.

Definition 3. Any partial word over A♦ with length n is a rich partial
word if it has at least n distinct partial palindromic proper factors.

Example 4. Consider a partial word u♦ = aa♦ba over A♦ = {a, b} ∪ {♦}
with |u♦| = 5.
The set of all distinct palindromic proper factors of u♦ are

{λ, a, b, aa, a♦,♦b, aa♦,♦ba, bab, a♦ba} .

Among the above set, the set of all distinct partial palindromic factors of u♦
are

{a♦,♦b, aa♦,♦ba, a♦ba} .

Here the number of distinct partial palindromic proper factors is equal to |u♦|.
Hence u♦ is a rich partial word.

Example 5. Consider a partial word v♦ = ♦ababb with length |v♦| = 6
over A♦ = {a, b} ∪ {♦} . Then the partial palindromic proper factors of v♦ are

v♦ = {♦a,♦ab,♦abab} .

Here the number of distinct partial palindromic proper factors is less than |v♦|.
Hence v♦ is not a rich partial word.

Definition 6. Consider a finite alphabet A♦ = A ∪ {♦}. For any integer
m, let u♦, Im ∈ A

+
♦

where u♦ represent the rich ℘word over A♦; Im denotes

non-empty blocks of a rich ℘word in A
+
♦
such that

|Im| ≥

{

1 if ♦ /∈ Im,

2 if ♦ ∈ Im.
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Figure 1: For u♦ ∈ A
+
♦
, v♦ ∈ IB(u♦)

The block inversion of u♦ represented by IB(u♦) is the set

IB(u♦) = {IpIp−1...I2I1 : u♦ = I1I2...Ip−1Ip, p ≥ 1}.

A rich ℘word u♦ can be partitioned at most of |u♦| blocks. The block
inversion in L♦ ⊆ A

+
♦
which is denoted by IB(L♦) is

IB(L♦) =
⋃

u∈L♦

IB(u♦).

Example 7. Assume u♦ = ab♦b over A♦ = {a, b} ∈ {♦}. Then

IB(u♦) = {ab♦b,♦bba, bb♦a, b♦ba, bab♦,♦bab}.

Theorem 8. [17] Assume a total word x ∈ A
+ with |x| = n. Then

|IB(x)| = 2n−1 iff |Alph(x)| = n.

Theorem 9. Assume a rich ℘word u♦ ∈ A
+
♦
and |u♦| = n. Then |IB(u♦)| <

2n−1 iff |Alph(u♦)| ≤ n.

Proof. Consider u♦ ∈ A
+
♦

and |u♦| = n such that |IB(u♦)| = 2n−1. If

a ∈ A
+
♦

is a letter, then the number of occurences of a in the rich ℘word u♦
is denoted by |u♦|a. Let |u♦|a ≥ 1 and |u♦|♦ ≥ 1. Also let a ∈ Alph(u♦) and
♦ ∈ Alph(u♦),♦ /∈ A. There are four cases to consider:

1. Assume that |u♦|a > 1 and |u♦|♦ > 1. Then for some x, y, z ∈ A
∗, u♦ =

axay♦z♦. For I1 = axa, I2 = y, I3 = ♦z♦, we get I3I2I1 = ♦z♦yaxa ∈
IB(u♦). But we do not get J7J6J5J4J3J2J1 = ♦z♦yaxa ∈ IB(u♦) for
J1 = a, J2 = x, J3 = a, J4 = y, J5 = ♦, J6 = z, J7 = ♦ since ♦ without a
companion does not exist as a block. Since J7J6J5J4J3J2J1 cannot exist,
then |IB(u♦)| = 2|u♦|−1 is a contradiction.
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2. Assume that |u♦|a = 1 and |u♦|♦ > 1. Then for some x, y, z ∈ A
∗,

u♦ = xay♦z♦. For I1 = x, I2 = a, I3 = y, I4 = ♦z♦, we get I4I3I2I1 =
♦z♦yax ∈ IB(u♦). But we do not get J6J5J4J3J2J1 = ♦z♦yax ∈ IB(u♦)
for J1 = x, J2 = a, J3 = y, J4 = ♦, J5 = z, J6 = ♦. Thus I4I3I2I1 6=
J6J5J4J3J2J1, then |IB(u♦)| < 2|u♦|−1.

3. Assume that |u♦|a > 1 and |u♦|♦ = 1. Then u♦ = axay♦z for some
x, y, z ∈ A

∗. For I1 = axa, I2 = y, I3 = ♦z, we get I3I2I1 = ♦zyaxa ∈
IB(u♦). But we do not get J6J5J4J3J2J1 = ♦zyaxa ∈ IB(u♦) for J1 =
a, J2 = x, J3 = a, J4 = y, J5 = z, J6 = ♦ since ♦ without a compan-
ion does not exist as a block. Since J6J5J4J3J2J1 cannot exist, then
|IB(u♦)| = 2|u♦|−1 is a contradiction.

4. Assume that |u♦|a = 1 and |u♦|♦ = 1. Then for some x, y, z ∈ A
∗,

u♦ = xay♦z. For I1 = x, I2 = a, I3 = y, I4 = ♦z, we get I4I3I2I1 =
♦zyax ∈ IB(u♦). But we do not get J5J4J3J2J1 = ♦zyax ∈ IB(u♦) for
J1 = x, J2 = a, J3 = y, J4 = z, J5 = ♦. Since J5J4J3J2J1 cannot exist,
then |IB(u♦)| = 2|u♦|−1 is a contradiction.

Thus, for each a ∈ Alph(u♦) and ♦ ∈ Alph(u♦),♦ /∈ A, |u♦|a ≥ 1 and
|u♦|♦ ≥ 1, i.e, |Alph(u♦)| ≤ n if |IB(u♦)| < 2n−1.

Conversely, consider u♦ such that for each a ∈ Alph(u♦) and ♦ ∈ Alph(u♦),♦ /∈
A, |u♦|a ≥ 1 and |u♦|♦ ≥ 1. For 1 ≤ k < |u♦|, the rich ℘word u♦ can be divided

into k non-empty blocks in
(|u♦|−1

k−1

)

distinct ways. Since all the letters in u♦

are distinct, the block inversion of such a rich ℘word contains 2|u♦|−1 elements.
Hence, the proof.

Example 10. Consider the rich ℘words u1♦ = aa♦b♦, u2♦ = ca♦b♦, u3♦ =
aba♦, u4♦ = ab♦c over A♦ = {a, b, c} ∪ {♦} with |u1♦| = 5, |u2♦| = 5, |u3♦| = 4 and
|u4♦| = 4. Here |Alph(u1♦)| = 3, |Alph(u2♦)| = 4, |Alph(u3♦)| = 3 and |Alph(u4♦)| =
4.

IB(u
1
♦) = {aa♦b♦,♦b♦aa, b♦a♦a, b♦aa♦}

IB(u
2
♦) = {ca♦b♦,♦b♦ac,♦b♦ca, b♦a♦c, b♦ca♦}

IB(u
3
♦) = {a♦ba, aba♦, a♦ab, ba♦a}

IB(u
4
♦) = {ab♦c,♦cba,♦cab, b♦ca}.

Here

|IB(u
1
♦)| = 4 < 2|u♦|−1
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|IB(u
2
♦)| = 5 < 2|u♦|−1

|IB(u
3
♦)| = 4 < 2|u♦|−1

|IB(u
4
♦)| = 4 < 2|u♦|−1.

A subset of the set IB(u♦) that considers rich ℘words with the inversion of
minimum two non-empty blocks is termed as a proper block inversion.

Definition 11. The proper block inversion of u♦ denoted by PIB(u♦) is

PIB(u♦) = {IpIp−1...I2I1 : u♦ = I1I2...Ip−1Ip, p ≥ 2}.

The proper block inversion of (u♦)◦ denoted by PIB((u♦)◦) is

PIB((u♦)◦) = {IB(PIB(u♦)) : u♦ = I1I2...Ip−1Ip, p ≥ 2}.

Example 12. Assume u♦ = ac♦ca over A♦. Then

PIB(u♦) = {c♦caa,♦caac, caac♦, aac♦c, cac♦a, a♦cca, a♦cac,

acac♦, ac♦ca, acc♦a,♦caca},

P IB((u♦)◦) = {c♦caa,♦caac, caac♦, aac♦c, cac♦a, a♦cca, a♦cac,

acac♦, ac♦ca, acc♦a,♦caca, aacc♦, aa♦cc, acac♦,

aca♦c, ca♦ca, c♦aca, ac♦ac,♦ccaa}.

Definition 13. A rich ℘word u♦ over A♦ is called a block palindrome
(denoted as bpal) if u♦ exists as

u♦ = I−pI−(p−1)...I−1I0I1...I(p−1)Ip,

where Im, I−m ∈ A
+
♦

and Im = I−m for 1 ≤ m ≤ p. Here I0 ∈ A
∗ is the

mid-block and it may or may not be a palindrome.

Remark 14. A palindromic rich ℘word is a bpal formed by palindromic
partitioning but the converse does not holds. For instance, the partial word
u♦ = bab♦b♦babb is not a palindrome but u♦ is a bpal with palindromic parti-
tioning b ab ♦b ♦b ab b.

Remark 15. A unique representation of a rich ℘word as a bpal is not a
necessary condition.
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Example 16. Consider u♦ = b♦aab♦ over A♦ = {a, b} ∪ {♦}. Here u♦ is
a bpal with palindromic partitioning b♦ a a b♦ as well as b♦ aa b♦.

Theorem 17. For any rich ℘word u♦ ∈ A
+
♦
, u♦ ∈ PIB(u♦) iff u♦ is a bpal.

Proof. Let the rich ℘word u♦ ∈ PIB(u♦). Then by Definition 13, there ex-
ists Im, I−m ∈ A

+
♦
for 2 ≤ m ≤ p such that u♦ = I−pI−(p−1)...I−1 = I1...I(p−1)Ip.

Let |I1| ≤ |Ip|, then we have the following cases:

1. If |I1| = |Ip|, it is trivial that u♦ ∈ PIB(u) is a bpal.

2. Let |I1| < |Ip|. Then Ip = I1x for some x ∈ A
∗. We have

u♦ = IpIp−1...I2I1

= I1xIp−1...I2I1

= I1I0I1 where I0 = xIp−1...I2.

Thus u♦ is a bpal.
Conversely, let u♦ be a bpal. Then u♦ ∈ PIB(u♦) since Im = I−m for

1 ≤ m ≤ p.

Lemma 18. [3] For any non-empty rich ℘words u♦ and v♦, the equality
u♦v♦ = v♦u♦ holds iff u♦ = wi

♦ and v♦ = wj
♦
for some positive integers i, j and

rich ℘word w♦.

Remark 19. For all integers i, j ≥ 1, the rich ℘word ui♦ is a palindrome

iff uj
♦
is a palindrome.

Theorem 20. For any non-empty partial words u♦ and v♦, the concate-
nation u♦v♦ is a bpal iff both u♦, v♦ are powers of some bpal w♦.

Proof. Suppose u♦v♦ is a bpal, by Definition 13 we have

u♦ = {I−pI−(p−1)...I−1I0I1...I(p−1)Ip},

v♦ = {I−qI−(q−1)...I−1I0I1...I(q−1)Iq},

where Im, I−m, In, I−n,∈ A
+
♦

and Im = I−m, In = I−n for 1 ≤ m ≤ p and
1 ≤ n ≤ q. Then we get

u♦v♦ = {I−pI−(p−1)...I(p−1)IpI−qI−(q−1)...I(q−1)Iq}
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= {IqI(q−1)...I−(q−1)I−qIpI(p−1)...I−(p−1)I−p}

= (u♦v♦)
R

= (v♦)
R(u♦)

R

= v♦u♦.

By Lemma 18 and Remark 19, we have that both u♦, v♦ are powers of some block
palindrome w♦. Conversely, if u♦ = wi

♦ and v♦ = wj
♦
, we have u♦v♦ = wi+j

♦
,

which is a bpal by Remark 19.

The total count of total words in the block inversion set of a total word
of length n is equal to 2n−1. But it is not so, in the case of rich ℘words.
The following theorem proves that the total count of rich ℘words in the block
inversion set of a rich ℘word of length n is strictly less than 2n−1.

Lemma 21. [10] The count of palindromic segments of an integer n is

2⌊
n

2 ⌋. Also,

Count of palindromic segments of n with






2k + 1 parts equals
(⌈n

2 ⌉−1

k

)

,

2k parts equals
(⌈n

2 ⌉−1

k−1

)

.

Theorem 22. Assume u♦ to be a palindromic partial word with |u♦| = n.
Let Pal(IB(u♦)) denote the total number of palindromic words in IB(u♦). Then

Pal(IB(u♦)) =

{

< 2
n

2
−1 if n is even, |Alph(u♦)| =

n
2 ,

< 2
n−1

2
−1 if n is odd, |Alph(u♦)| =

n+1
2 .

Proof. Consider a palindromic rich ℘word u♦ with |u♦| = n. The following
two cases arises with respect to n.

Case 1 : Let n be even and |Alph(u♦)| =
n
2 . By Lemma 23, all elements

of IB(u♦) with palindromic blocks are palindromes. Let v♦ ∈ IB(u♦) be a
palindrome with palindromic blocks n1 + n2 + ... + nm + ... + n2 + n1. Since
n is even, nm is also even. This implies that palindromic blocks with an even
number of parts forms v♦. Then followed by the Theorem 17 and the Lemma
21, we get the total number of palindromic elements in IB(u♦) less than 2

n

2
−1.

Case 2 : Let n be odd and |Alph(u♦)| =
n+1
2 . This shows that a letter occurs

once in the rich ℘word and also in the mid position of u♦. Let v ∈ IB(u♦) be
a palindrome. The palindromic blocks of v♦ are of the form n1 + n2 + ... +
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nm+nm+ ...+n2 +n1. Then by Theorem 17, the total number of palindromic

elements in IB(u♦) is less than 2
n+1

2
−1.

Remark 23. If u♦ over A+
♦
is a palindromic rich ℘word then all elements

of IB(u♦) with palindromic partitions are palindromes.

4. Conclusion and Future Work

We extended block inversion operation on finite rich ℘words and also discussed
the classification of palindromic words in the block inversion of a finite rich
℘word. In future, it would be interesting to study the combinatorial properties
of finite ℘words using non-overlapping inversion and pseudo inversion opera-
tions.
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