In this paper, we introduce a new subclass of analytic and bi-univalent functions involving a certain fractional integral operator which is defined based on quasi-subordination. For this class, we estimate the second and third coefficients of the Taylor-Maclaurin series expansions and upper bounds for Feketo-Szeg inequality. Furthermore, some relevant connections of certain special cases of the main results with those in several earlier works are also pointed out.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] E. A. Adegani, N. E. Cho, A. Motamednezhad and M. Jafari, Bi-univalent
functions associated with Wright hypergeometric functions, J. Comput.
Anal. Appl. 28 (2020), 261-271.
[2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient
estimates for bi-univalent Ma-Minda starlike and convex functions, Appl.
Math. Lett. 25 (2012), 344-351.
[3] Ş. Altinkaya and S. Yalçin, Estimates on coefficients of a general subclass
of bi-univalent functions associated with symmetric q-derivative operator
by means of the Chebyshev polynomials, Asia Pacific J. Math. 4 (2017),
90-99.
[4] D. A. Brannan and J. Clunie, Aspects of Contemporary Complex Analysis,
Academic Press, London, UK, 1980.
[5] J. H. Choi, Note on differential subordination associated with fractional
integral operator, Far East J. Math. Sci. 26 (2007), 499-511.
[6] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of
a certain family of integral operators, J. Math. Anal. Appl. 276 (2002),
432-445.
[7] E. Deniz, Certain subclasses of bi-univalent functions satifying subordinate
conditions, J. Classical Anal. 2 (2013), 49-60.
[8] K. Dhanalakshmi, D. Kavitha and A. Anbukkarasi, Certain subclass of
bi-univalent functions associated with Horadam polynomials, Int. J. Appl.
Math. 34 (2021), 77-90.
[9] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg and
Tokyo, 1983.
[10] P.N. Kamble, M.G. Shrigan and H.M. Srivastava, A novel subclass of univalent functions involving operators of fractional calculus, Int. J. Appl.
Math. 30, No 6 (2017), 501-514; DOI: 10.12732/ijam.v30i6.4.
[11] V. Kiryakova, On two Saigo’s fractional integral operators in the class of
univalent functions, Fract. Calc. Appl. Anal. 9, No 2 (2006), 159-176.
[12] V. Kiryakova, M. Saigo and H. M. Srivastava, Some criteria for univalence
of analytic functions involving generalized fractional calculus operators,
Fract. Calc. Appl. Anal. 1, No 1 (1998), 79-104.
[13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer.
Math. Soc. 18 (1967), 63-68.
[14] J. L. Liu, Notes on Jung-Kim-Srivastava integral operator, J. Math. Anal.
Appl. 294 (2004), 96-103.
[15] N. Magesh, V. K. Balaji and J. Yamini, Certain subclass of bistarlike and
biconvex functions based on quasi-subordination, Abstr. Appl. Anal. 2016
(2016), Article ID 3102960, 1-6.
[16] N. Magesh, T. Rosy and S. Varma, Coefficient estimate problem for a new
subclass of biunivalent functions, J. Complex Anal. 2013 (2013), Article
ID 474231, 1-3.
[17] E. Muthaiyan, (P, Q)-Lucas polynomial coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions, Int. J. Appl. Math. 36
(2023), 63-73; DOI: 10.12732/ijam.v36i1.5.
[18] E. Netanyahu, The minimal distance of the image boundary from the origin
and the second coefficient of a univalent function in |z| < 1, Arch. Rational
Mech. Anal. 32 (1969), 100-112.
[19] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems
for starlike and convex functions involving a certain fractional integral
operator, J. Math. Anal. Appl. 140 (1989), 419-426.
[20] M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull.
Amer. Math. Soc. 76 (1970), 1-9.
[21] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ. 11 (1978),
135-143.
[22] H.M. Srivastava and R.G. Buschman, Theory and Applications of Convolution Integral Equations, Kluwer Academic Publishers, dordrecht, Boston
and London, 1992.
[23] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a
general subclass of analytic and bi-univalent functions of the Ma-Minda
type, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 112 (2018),
1157-1168.
[24] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and
Derivatives, Theory and Applications, Gordon and Breach, New York,
Philadelphia, London, Paris, Montreux, Toronto and Melbourne, 1993.
[25] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of
analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-
1192.
[26] H. M. Srivastava and A. K. Wanas, Initial Maclayrin coefficient bounds
for new subclasses of analytic and m-fold symmetric bi-univalent functions
defined by a linear combination, Kyungpook Math. J. 59 (2019), 493-503.
[27] T. J. Suffridge, A coefficient problem for a class of univalent functions,
Michigan Math. J. 16 (1969), 33-42.