NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS
BASED ON QUASI-SUBORDINATION

Abstract

In this paper, we introduce a new subclass $\MQ$ of analytic and bi-univalent functions involving a certain fractional integral operator which is defined based on quasi-subordination. For this class, we estimate the second and third coefficients of the Taylor-Maclaurin series expansions and upper bounds for Feketo-Szeg$\rm\ddot{o}$ inequality. Furthermore, some relevant connections of certain special cases of the main results with those in several earlier works are also pointed out.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 5
Year: 2023

DOI: 10.12732/ijam.v36i5.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] E. A. Adegani, N. E. Cho, A. Motamednezhad and M. Jafari, Bi-univalent functions associated with Wright hypergeometric functions, J. Comput. Anal. Appl. 28 (2020), 261-271.
  2. [2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351.
  3. [3] Ş. Altinkaya and S. Yalçin, Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials, Asia Pacific J. Math. 4 (2017), 90-99.
  4. [4] D. A. Brannan and J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, London, UK, 1980.
  5. [5] J. H. Choi, Note on differential subordination associated with fractional integral operator, Far East J. Math. Sci. 26 (2007), 499-511.
  6. [6] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
  7. [7] E. Deniz, Certain subclasses of bi-univalent functions satifying subordinate conditions, J. Classical Anal. 2 (2013), 49-60.
  8. [8] K. Dhanalakshmi, D. Kavitha and A. Anbukkarasi, Certain subclass of bi-univalent functions associated with Horadam polynomials, Int. J. Appl. Math. 34 (2021), 77-90.
  9. [9] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  10. [10] P.N. Kamble, M.G. Shrigan and H.M. Srivastava, A novel subclass of univalent functions involving operators of fractional calculus, Int. J. Appl. Math. 30, No 6 (2017), 501-514; DOI: 10.12732/ijam.v30i6.4.
  11. [11] V. Kiryakova, On two Saigo’s fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal. 9, No 2 (2006), 159-176.
  12. [12] V. Kiryakova, M. Saigo and H. M. Srivastava, Some criteria for univalence of analytic functions involving generalized fractional calculus operators, Fract. Calc. Appl. Anal. 1, No 1 (1998), 79-104.
  13. [13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
  14. [14] J. L. Liu, Notes on Jung-Kim-Srivastava integral operator, J. Math. Anal. Appl. 294 (2004), 96-103.
  15. [15] N. Magesh, V. K. Balaji and J. Yamini, Certain subclass of bistarlike and biconvex functions based on quasi-subordination, Abstr. Appl. Anal. 2016 (2016), Article ID 3102960, 1-6.
  16. [16] N. Magesh, T. Rosy and S. Varma, Coefficient estimate problem for a new subclass of biunivalent functions, J. Complex Anal. 2013 (2013), Article ID 474231, 1-3.
  17. [17] E. Muthaiyan, (P, Q)-Lucas polynomial coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions, Int. J. Appl. Math. 36 (2023), 63-73; DOI: 10.12732/ijam.v36i1.5.
  18. [18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. 32 (1969), 100-112.
  19. [19] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, J. Math. Anal. Appl. 140 (1989), 419-426.
  20. [20] M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1-9.
  21. [21] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ. 11 (1978), 135-143.
  22. [22] H.M. Srivastava and R.G. Buschman, Theory and Applications of Convolution Integral Equations, Kluwer Academic Publishers, dordrecht, Boston and London, 1992.
  23. [23] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 112 (2018), 1157-1168.
  24. [24] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, New York, Philadelphia, London, Paris, Montreux, Toronto and Melbourne, 1993.
  25. [25] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188- 1192.
  26. [26] H. M. Srivastava and A. K. Wanas, Initial Maclayrin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59 (2019), 493-503.
  27. [27] T. J. Suffridge, A coefficient problem for a class of univalent functions, Michigan Math. J. 16 (1969), 33-42.