International Journal of Applied Mathematics

Volume 36 No. 6 2023, 747-756

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v36i6.1

ANTI PRODUCT FUZZY GRAPHS

Talal Ali Al-Hawary

Department of Mathematics

Yarmouk University

Irbid – JORDAN

Abstract: In this article, we launch the conception of anti product fuzzy graph and two operations on them; namely join and product. We give sufficient conditions for the join and product of two anti product fuzzy graph to be complete. We also provide equivalent conditions for the join of two unbiased anti product fuzzy graphs to be unbiased.

AMS Subject Classification: 05C72

Key Words: anti product fuzzy graph, complete, unbiased, join, product

1. Background

The theory of graph has many applications in mathematics and economics. Since most of the problems on graphs are undetermined, it is necessary to handle these facets via the method of fuzzy logic. Fuzzy relations were introduced by Zadeh [22] in 1965. Rosenfeld [19] in 1975, introduced fuzzy graphs (simply, FG) and some ideas that are generalizations of those of graphs. Nowadays, this theory is having more and more applications in which the information level immanent in the set of things working together as parts of a mechanism differ with various degrees of accuracy. Fuzzy fashion are convenient as they reduce differences between long-established numerical models of expert systems and symbolic models. Peng and Mordeson [14] defined the conceptualization of FGs complement and conscious FGs operations. In [21], it is improved a complement's definition in order to guarantee the original FG is isomorphic to

Received: 2 February 2023 © 2023 Academic Publications

complement of the complement, which concurs with the case of crisp graphs. In addition, self-complementary FGs properties and the complement under FGs join, union and composition (introduced in [14]) were explored. Al-Hawary [1] introduced the concept of balanced in the class of FGs and Al-Hawary and others have deeply explored this ides for many types of FGs. For more on the foregoing concepts and those coming after ones, one can see [2, 4, 5, 6, 7, 8, 9, 10, 14, 16, 17, 18, 21].

For a non-empty finite set \H , a fuzzy subset of \H is a mapping $\$; \H is and a fuzzy subset of \H is called a fuzzy relation ς on $\$. We assume that \H is finite and ς is reflexive and symmetric.

Definition 2. ([19]) Two FGs $G_1: (\xi_1, \zeta_1)$ and $G_2: (\xi_2, \zeta_2)$ are said to be *isomorphic* providing the existence of a bijective $\tau: \mathring{U}_1 \to \mathring{U}_2$ such that $\xi_1(c) = \xi_2(\tau(c))$ for all $c \in \mathring{U}_1$ and $\zeta_1(c,s) = \zeta_2(\tau(c),\tau(s))$ for all $(c,s) \in \check{E}_1$. We then write $G_1 \simeq G_2$ and h is called an *isomorphism*.

Using the operation of product instead of minimum, in [20] Ramaswamy and Poornima established PFGs.

Definition 3. ([20]) Let G^* : (\H U, \H E) be a graph, $\$ t be a fuzzy subset of \H U and $\$ G be a fuzzy subset of \H U \H U. We call G: ($\$ t, $\$ G) a product fuzzy graph (simply, PFG), if $\$ G($\$ C, $\$ S) $\le \$ t($\$ C)t($\$ S) for all $\$ C, $\$ S $\in \H$ U.

The next result follows immediately.

Theorem 4. Every PFG is a FG.

Definition 5. [20] A PFG G: (ξ, ς) is called *complete* if $\varsigma(c, s) = \xi(c)\xi(s)$ for all $c, s \in \mathring{\mathbf{U}}$.

Definition 6. ([20]) The complement of a PFG \S : (\mathfrak{t},ς) is \S^c : $(\mathfrak{t}^c,\varsigma^c)$

where $t^c = t$ and

$$\varsigma^{c}(c,s) = \xi^{c}(c)\xi^{c}(s) - \varsigma(c,s)
= \xi(c)\xi(s) - \varsigma(c,s).$$

Anti fuzzy graphs were introduced in [13]. The notion of join and product of FGs was introduced and studied in [21] where the complement for these operations was the main idea. In Section 2 of this paper, we launch the conception of anti product fuzzy graph and two operations on them. We give sufficient conditions for the join and product of two anti product fuzzy graphs to be complete. Section 3 is devoted to provide equivalent conditions for the join of two unbiased APFGs to be unbiased.

2. Anti product fuzzy graph

We begin this section by defining the anti product fuzzy graph.

Definition 7. A FG G: (ξ, ς) is said to be an product fuzzy graph (APFG) if $\varsigma(\ddot{u}, \ddot{y}) \ge \xi(\ddot{u})\xi(, \ddot{y})$ for all $\ddot{u}, \ddot{y} \in \xi^*$.

Clearly, every complete PFG is an APFG, but the converse is not true in general. In fact, an APFG may not be a PFG. For example, the APFG G: (ξ, ς) where $\xi(x)=.1$, $\xi(y)=.1$ and $\zeta(x,y)=.2$ is not a PFG.

Definition 8. Let $G_1: (\xi_1, \varsigma_1)$ and $G_2: (\xi_2, \varsigma_2)$ be APFGs with $\ddot{U}_1 \cap \ddot{U}_2 =$. The join of G_1 and G_2 is defined to be $G_1 + G_2: (\xi_1 + \xi_2, \varsigma_1 + \varsigma_2)$, where

$$(\boldsymbol{\xi}_1 + \boldsymbol{\xi}_2)(\boldsymbol{\tilde{u}}) = \left\{ \begin{array}{ll} \boldsymbol{\xi}_1(\boldsymbol{\tilde{u}}) & \boldsymbol{\tilde{u}} \in \boldsymbol{\tilde{U}}_1 \\ \boldsymbol{\xi}_2(\boldsymbol{\tilde{u}}) & \boldsymbol{\tilde{u}} \in \boldsymbol{\tilde{U}}_2 \end{array} \right.$$

and

$$(\varsigma_1 + \varsigma_2)(\ddot{\mathbf{u}}, \ddot{y}) = \begin{cases} \varsigma_1(\ddot{\mathbf{u}}, \ddot{y}) & \ddot{\mathbf{u}} \ddot{y} \in \breve{E}_1 \\ \varsigma_2(\ddot{\mathbf{u}}, \ddot{y}) & \ddot{\mathbf{u}} \ddot{y} \in \breve{E}_2 \\ \dot{\mathbf{t}}_1(\ddot{\mathbf{u}}) \dot{\mathbf{t}}_2(\ddot{y}) & \ddot{\mathbf{u}} \in \ddot{\mathbf{U}}_1, \ddot{y} \in \ddot{\mathbf{U}}_2 \end{cases}.$$

Theorem 9. The join of two APFGs $G_1: (\xi_1, \varsigma_1)$ and $G_2: (\xi_2, \varsigma_2)$ is an APFG.

Proof. To show the join is a APFG, we need only show that $\varsigma(\Hu, \Hu) \ge (\vu_1 + \vu_2)$ $(\Hu)(\vu_1 + \vu_2)(\Hu)$ for all \Hu, \Hu .

Case 1: If $\ddot{\mathbf{u}}\ddot{\mathbf{y}} \in \check{E}_1$, then $\ddot{\mathbf{u}}, \ddot{\mathbf{y}} \in \ddot{\mathbf{U}}_1$ and as \mathbf{Q}_1 is an APFG,

$$\begin{array}{lcl} (\varsigma_{1}+\varsigma_{2})(\mbox{\'{u}},\mbox{\'{y}}) & = & \varsigma_{1}(\mbox{\'{u}},\mbox{\'{y}}) \\ & \geq & \mbox{\rlap{t}}_{1}(\mbox{\'{u}})\mbox{\rlap{t}}_{2}(\mbox{\'{y}}) \\ & = & (\mbox{\rlap{t}}_{1}+\mbox{\rlap{t}}_{2})(\mbox{\'{u}})(\mbox{\rlap{t}}_{1}+\mbox{\rlap{t}}_{2})(\mbox{\'{y}}). \end{array}$$

The case that $\ddot{u}\ddot{y} \in \breve{E}_2$ is similar to the case $\ddot{u}\ddot{y} \in \breve{E}_1$.

Case 2: If $\ddot{u}\ddot{y} \notin \breve{E}_1$ and $\ddot{u}\ddot{y} \notin \breve{E}_2$, then

$$(\varsigma_1 + \varsigma_2)(\tilde{\mathbf{u}}, \ddot{y}) = \xi_1(\tilde{\mathbf{u}})\xi_2(\ddot{y})$$

= $(\xi_1 + \xi_2)(\tilde{\mathbf{u}})(\xi_1 + \xi_2)(\ddot{y})$

This completes the proof.

Theorem 10. Two APFGs $G_1:(\xi_1,\varsigma_1)$ and $G_2:(\xi_2,\varsigma_2)G_1:(\xi_1,\varsigma_1)$ and $G_2:(\xi_2,\varsigma_2)$ are complete if and only if their join is complete.

Proof. If the join of G_1 and G_2 is complete and $\ddot{u}\ddot{y} \in \breve{E}_1$, $\varsigma_1(\ddot{u}, \ddot{y}) = (\varsigma_1 + \varsigma_2)(\ddot{u}, \ddot{y}) = (\xi_1 + \xi_2)(\ddot{u})(\xi_1 + \xi_2)(\ddot{y}) = \xi_1(\ddot{u})\xi_2(\ddot{y})$ and hence G_1 is complete. Similarly, G_2 is complete.

Conversely, let G_1 and G_2 be complete. If $\H{u}\ddot{y} \in \breve{E}_1$, then $\H{u},\ddot{y} \in \H{U}_1$ and so $(\varsigma_1 + \varsigma_2)(\H{u}, \ddot{y}) = \varsigma_1(\H{u}, \ddot{y}) = \xi_1(\H{u})\xi_1(\H{y})$ because G_1 is complete. But $\xi_1(\H{u})\xi_1(\H{y}) = (\xi_1 + \xi_2)(\H{u})(\xi_1 + \xi_2)(\H{u})(\xi_1 + \xi_2)(\H{u})(\xi_1 + \xi_2)(\H{u})$ and so $(\varsigma_1 + \varsigma_2)(\H{u}, \H{y}) = (\xi_1 + \xi_2)(\H{u})(\xi_1 + \xi_2)(\H{y})$. Hence the join is complete.

Theorem 11. Let $G_1:(t_1,s_1)$ and $G_2:(t_2,s_2)$ be APFGs. Then:

- $a) (G_1 + G_2)^c \simeq (G_1^c \cup G_2^c),$
- b) $(G_1 \cup G_2)^c \simeq (G_1^c + G_2^c)$.

Proof. a) For $\tilde{\mathbf{u}} \in \tilde{\mathbf{U}}_1$, $(\mathfrak{t}_1 + \mathfrak{t}_2)^c(\tilde{\mathbf{u}}) = (\mathfrak{t}_1 + \mathfrak{t}_2)(\tilde{\mathbf{u}}) = \mathfrak{t}_1(\tilde{\mathbf{u}})$. On the other hand, $\mathfrak{t}_1^c(\tilde{\mathbf{u}}) \vee \mathfrak{t}_2^c(\tilde{\mathbf{u}}) = \mathfrak{t}_1(\tilde{\mathbf{u}}) \vee \mathfrak{t}_2(\tilde{\mathbf{u}}) = \mathfrak{t}_1(\tilde{\mathbf{u}})$. Similar result will occur for $\tilde{\mathbf{u}} \in \tilde{\mathbf{U}}_2$. Now if $\tilde{\mathbf{u}} \ddot{y} \in \tilde{E}_1$, then $\tilde{\mathbf{u}}, \ddot{y} \in \tilde{\mathbf{U}}_1$ and so

$$(\varsigma_{1} + \varsigma_{2})^{c}(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}) = (\xi_{1} + \xi_{2})(\ddot{\mathbf{u}})(\xi_{1} + \xi_{2})(\ddot{\mathbf{y}}) - (\varsigma_{1} + \varsigma_{2})(\ddot{\mathbf{u}}, \ddot{\mathbf{y}})$$

$$= \xi_{1}(\ddot{\mathbf{u}})\xi_{1}(\ddot{\mathbf{y}}) - \varsigma_{1}(\ddot{\mathbf{u}}, \ddot{\mathbf{y}})$$

$$= \varsigma_{1}^{c}(\ddot{\mathbf{u}}, \ddot{\mathbf{y}})$$

$$= \varsigma_1^c(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}) \vee \varsigma_2^c(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}).$$

Similarly, when $\Hu, \ddot{y} \in \Hu_2$, we get $(\varsigma_1 + \varsigma_2)^c(\Hu, \ddot{y}) = \varsigma_1^c(\Hu, \ddot{y}) \vee \varsigma_2^c(\Hu, \ddot{y})$. Now if $\Hu \in \Hu_1$ and $\ddot{y} \in \Hu_2$, then

$$(\varsigma_{1} + \varsigma_{2})^{c}(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}) = (\xi_{1} + \xi_{2})(\ddot{\mathbf{u}})(\xi_{1} + \xi_{2})(\ddot{\mathbf{y}}) - (\varsigma_{1} + \varsigma_{2})(\ddot{\mathbf{u}}, \ddot{\mathbf{y}})$$

$$= \xi_{1}(\ddot{\mathbf{u}})\xi_{2}(\ddot{\mathbf{y}}) - \xi_{1}(\ddot{\mathbf{u}})\xi_{2}(\ddot{\mathbf{y}})$$

$$= 0$$

$$= \varsigma_{1}^{c}(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}) \vee \varsigma_{2}^{c}(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}).$$

b) For $\tilde{\mathbf{u}} \in \tilde{\mathbf{U}}_1$,

$$\begin{split} (\mbox{$\mbox{$\xi$}}_1 \cup \mbox{$\mbox{ξ}}_2)^c (\mbox{$\mbox{$\mathring{u}$}$}) &= (\mbox{$\mbox{$\xi$}}_1 \cup \mbox{$\mbox{ξ}}_2) (\mbox{\Hat{u}}) = \mbox{$\mbox{$\xi$}}_1 (\mbox{$\Hat{u}$}) \vee \mbox{$\mbox{ξ}}_2 (\mbox{\Hat{u}}) \\ &= \mbox{$\mbox{$\xi$}}_1^c (\mbox{$\Hat{u}$}) \vee \mbox{$\mbox{ξ}}_2^c (\mbox{\Hat{u}}) = (\mbox{$\mbox{$\xi$}}_1^c + \mbox{$\mbox{ξ}}_2^c) (\mbox{\Hat{u}}). \end{split}$$

Similar result will occur for $\tilde{\mathbf{u}} \in \tilde{\mathbf{U}}_2$.

Now if $\ddot{\mathbf{u}}\ddot{\mathbf{y}} \in \breve{E}_1$, then $\ddot{\mathbf{u}}, \ddot{\mathbf{y}} \in \ddot{\mathbf{U}}_1$ and so,

$$\begin{aligned} (\varsigma_1 \cup \varsigma_2)^c(\mathring{\mathbf{u}}, \ddot{y}) &= (\mathfrak{t}_1 \cup \mathfrak{t}_2)(\mathring{\mathbf{u}})(\mathfrak{t}_1 \cup \mathfrak{t}_2)(\ddot{y}) - (\varsigma_1 \cup \varsigma_2)(\mathring{\mathbf{u}}, \ddot{y}) \\ &= \mathfrak{t}_1(\mathring{\mathbf{u}})\mathfrak{t}_1(\ddot{y}) - \varsigma_1(\mathring{\mathbf{u}}, \ddot{y}) \\ &= \varsigma_1^c(\mathring{\mathbf{u}}, \ddot{y}). \end{aligned}$$

Similarly, when $\Hu, \ddot{y} \in \HU_2$, we get $(\varsigma_1 \cup \varsigma_2)^c(\Hu, \ddot{y}) = \varsigma_2^c(\Hu, \ddot{y})$. Now if $\Hu \in \HU_1$ and $\ddot{y} \in \HU_2$, then

$$\begin{aligned} (\varsigma_1 \cup \varsigma_2)^c(\ddot{\mathbf{u}}, \ddot{y}) &= & (\xi_1 \cup \xi_2)(\ddot{\mathbf{u}})(\xi_1 \cup \xi_2)(\ddot{y}) - (\varsigma_1 \cup \varsigma_2)(\ddot{\mathbf{u}}, \ddot{y}) \\ &= & \xi_1(\ddot{\mathbf{u}})\xi_2(\ddot{y}) \\ &= & \xi_1^c(\ddot{\mathbf{u}})\xi_1^c(\ddot{y}). \end{aligned}$$

This completes the proof that $(\varsigma_1 \cup \varsigma_2)^c(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}) = (\varsigma_1^c \cup \varsigma_2^c)(\ddot{\mathbf{u}}, \ddot{\mathbf{y}}).$

Definition 12. Let $G_1: (\xi_1, \varsigma_1)$ and $G_2: (\xi_2, \varsigma_2)$ be APFGs. The product of G_1 and G_2 is defined to be $G_1 \times G_2: (\xi_1 \times \xi_2, \varsigma_1 \times \varsigma_2)$ where $(\xi_1 \times \xi_2)(\mathring{u}, \mathring{y}) = \xi_1(\mathring{u}) \xi_2(\mathring{y})$ for all $\mathring{u} \in \mathring{U}_1$ and $\mathring{y} \in \mathring{U}_2$ and $(\varsigma_1 \times \varsigma_2)((\mathring{u}_1, \mathring{u}_2), (\mathring{y}_1, \mathring{y}_2) = \varsigma_1(\mathring{u}_1, \mathring{y}_1) \varsigma_2(\mathring{u}_2, \mathring{y}_2)$ for all $\mathring{u}_1, \mathring{y}_1 \in \mathring{U}_1$ and $\mathring{u}_2, \mathring{y}_2 \in \mathring{U}_2$.

Next, we show that the above definition is well-defined.

Theorem 13. Let $G_1:(\xi_1,\varsigma_1)$ and $G_2:(\xi_2,\varsigma_2)$ be APFGs. Then $G_1\times G_2$ is an APFG.

Proof. Let $\ddot{\mathbf{u}}_1, \ddot{y}_1 \in \ddot{\mathbf{U}}_1$ and $\ddot{\mathbf{u}}_2, \ddot{y}_2 \in \ddot{\mathbf{U}}_2$. Then

Theorem 14. Two APFGs $G_1: (\xi_1, \varsigma_1)$ and $G_2: (\xi_2, \varsigma_2)G_1: (\xi_1, \varsigma_1)$ and $G_2: (\xi_2, \varsigma_2)$ are complete if and only if $G_1 \times G_2$ is complete.

Proof. Let $G_1 \times G_2$ be complete. We will first show that at least one APFG is complete by contradiction. So let us assume that both are not complete. Then there exist $\mathring{u}_1, \ddot{y}_1 \in \mathring{U}_1$ and $\mathring{u}_2, \ddot{y}_2 \in \mathring{U}_2$ such that $\varsigma_1(\mathring{u}_1, \ddot{y}_1) > \xi_1(\mathring{u}_1)\xi_1(\ddot{y}_1)$ and $\varsigma_2(\mathring{u}_2, \ddot{y}_2) > \xi_2(\mathring{u}_2)\xi_2(\ddot{y}_2)$. Now

$$\begin{aligned} (\varsigma_{1} \times \varsigma_{2})((\mathring{\mathbf{u}}_{1}, \mathring{\mathbf{u}}_{2}), (\ddot{y}_{1}, \ddot{y}_{2}) &= & \varsigma_{1}(\mathring{\mathbf{u}}_{1}, \ddot{y}_{1})\varsigma_{2}(\mathring{\mathbf{u}}_{2}, \ddot{y}_{2}) \\ &> & \xi_{1}(\mathring{\mathbf{u}}_{1})\xi_{1}(\ddot{y}_{1})\xi_{2}(\mathring{\mathbf{u}}_{2})\xi_{2}(\ddot{y}_{2}) \\ &= & \xi_{1}(\mathring{\mathbf{u}}_{1})\xi_{2}(\mathring{\mathbf{u}}_{1})\xi_{1}(\ddot{y}_{1})\xi_{2}(\ddot{y}_{2}) \\ &= & (\xi_{1} \times \xi_{2})(\mathring{\mathbf{u}}_{1}, \mathring{\mathbf{u}}_{2})(\xi_{1} \times \xi_{2})(\ddot{y}_{1}, \ddot{y}_{2}). \end{aligned}$$

This contradicts that $G_1 \times G_2$ is complete. Thus, without loss of generality, assume G_1 is complete. To show G_2 is complete, as $G_1 \times G_2$ is complete,

$$(\varsigma_1 \times \varsigma_2)((\mathring{\mathbf{u}}_1,\mathring{\mathbf{u}}_2),(\mathring{y}_1,\mathring{y}_2) = (\xi_1 \times \xi_2)(\mathring{\mathbf{u}}_1,\mathring{\mathbf{u}}_2)(\xi_1 \times \xi_2)(\mathring{y}_1,\mathring{y}_2).$$

Thus,

$$\begin{split} \varsigma_{1}(\mathring{\mathbf{u}}_{1}, \mathring{y}_{1})\varsigma_{2}(\mathring{\mathbf{u}}_{2}, \mathring{y}_{2}) &= & \xi_{1}(\mathring{\mathbf{u}}_{1})\xi_{2}(\mathring{\mathbf{u}}_{1})\xi_{1}(\mathring{y}_{1})\xi_{2}(\mathring{y}_{2}) \\ &= & \xi_{1}(\mathring{\mathbf{u}}_{1})\xi_{1}(\mathring{y}_{1})\xi_{2}(\mathring{\mathbf{u}}_{2})\xi_{2}(\mathring{y}_{2}) \\ &= & \varsigma_{1}(\mathring{\mathbf{u}}_{1}, \mathring{y}_{1})\xi_{2}(\mathring{\mathbf{u}}_{2})\xi_{2}(\mathring{y}_{2}), \end{split}$$

where the last equality holds because G_1 is complete. Now $\varsigma_1(\mathring{u}_1, \ddot{y}_1) \neq 0$ since otherwise, $\varsigma_1(\mathring{u}_1, \ddot{y}_1)\varsigma_2(\mathring{u}_2, \ddot{y}_2) = 0 = \xi_1(\mathring{u}_1)\xi_1(\ddot{y}_1)\xi_2(\mathring{u}_2)\xi_2(\ddot{y}_2)$ which means at least one term is zero and that is impossible. Now divide both sides of the above equilaty by $\varsigma_1(\mathring{u}_1, \ddot{y}_1)$, we get $\varsigma_2(\mathring{u}_2, \ddot{y}_2) = \xi_2(\mathring{u}_2)\xi_2(\ddot{y}_2)$, which means G_2 is complete.

Conversely, if Q_1 and Q_2 are complete,

$$\varsigma_1(\H{u}_1, \H{y}_1)\varsigma_2(\H{u}_2, \H{y}_2) = \xi_1(\H{u}_1)\xi_2(\H{u}_1)\xi_1(\H{y}_1)\xi_2(\H{y}_2)$$

$$= \xi_{1}(\ddot{\mathbf{u}}_{1})\xi_{1}(\ddot{y}_{1})\xi_{2}(\ddot{\mathbf{u}}_{2})\xi_{2}(\ddot{y}_{2})$$

$$= \zeta_{1}(\ddot{\mathbf{u}}_{1}, \ddot{y}_{1})\xi_{2}(\ddot{\mathbf{u}}_{2})\xi_{2}(\ddot{y}_{2})$$

$$= (\xi_{1} \times \xi_{2})(\ddot{\mathbf{u}}_{1}, \ddot{\mathbf{u}}_{2})(\xi_{1} \times \xi_{2})(\ddot{y}_{1}, \ddot{y}_{2}).$$

Hence $G_1 \times G_2$ is complete.

3. Unbiased APFGs

We begin this section by introducing the definition of unbiased APFGs and then proving the following Theorem 16 to make it possible characterize unbiased the join and product of two unbiased APFGs.

Definition 15. ([5]) The degree of compactness of an APFG is $c(\mathbb{G}) = 2 \sum_{\tilde{u}, \tilde{y} \in \tilde{E}} (\varsigma(\tilde{u}, \tilde{y}))$ $\frac{\tilde{u}\tilde{y} \in \tilde{E}}{\sum_{\tilde{u}, \tilde{y} \in \tilde{U}} (\xi(\tilde{u})\xi(\tilde{y}))}$. \mathbb{G} is unbiased if $c(\mathbb{G}) \leq c(H)$ for any non-empty product fuzzy subgraph H of \mathbb{G} .

Theorem 16. Let G_1 and G_2 be APFGs. Then $c(G_1) \ge c(G_1+G_2)$ and $c(G_2) \ge c(G_1+G_2)$ if and only if $c(G_1) = c(G_2) = c(G_1+G_2)$.

Proof. If
$$c(G_1) \ge c(G_1 + G_2)$$
 and $c(G_2) \ge c(G_1 + G_2)$, then
$$c(G_1) = 2(\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} \varsigma_1(\tilde{u}_1\tilde{u}_2)) / (\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} (\xi_1(\tilde{u}_1)\xi_1(\tilde{u}_2)))$$

$$\le 2(\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} \varsigma_1(\tilde{u}_1\tilde{u}_2)\xi_2(\ddot{y}_1)\xi_2(\ddot{y}_2)) / (\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} (\xi_1(\tilde{u}_1)\xi_1(\tilde{u}_2)\xi_2(\ddot{y}_1)\xi_2(\ddot{y}_2)))$$

$$(\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_2} (\xi_1(\tilde{u}_1)\xi_1(\tilde{u}_2)\xi_2(\ddot{y}_1)\xi_2(\ddot{y}_2)) / (\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} \varsigma_1(\tilde{u}_1\tilde{u}_2)\varsigma_2(\ddot{y}_1)\xi_2(\ddot{y}_2)) / (\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} (\xi_1(\tilde{u}_1)\xi_1(\tilde{u}_2)\xi_2(\ddot{y}_1)\xi_2(\ddot{y}_2)))$$

$$(\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} (\xi_1(\tilde{u}_1)\xi_1(\tilde{u}_2)\xi_2(\ddot{y}_1)\xi_2(\ddot{y}_2)))$$

$$(\sum_{\tilde{u}_1, \tilde{u}_2 \in \tilde{U}_1} (\xi_1(\tilde{u}_1)\xi_1(\tilde{u}_2)\xi_2(\ddot{y}_1)\xi_2(\ddot{y}_2)))$$

$$\leq 2(\sum_{\substack{\tilde{\mathbf{u}}_{1}, \tilde{\mathbf{u}}_{2} \in \tilde{\mathbf{U}}_{1} \\ \tilde{y}_{1}, \tilde{y}_{2} \in \tilde{\mathbf{U}}_{2}}} (\varsigma_{1} + \varsigma_{2})((\tilde{\mathbf{u}}_{1}\ddot{y}_{1}), (\tilde{\mathbf{u}}_{2}\ddot{y}_{2}))/$$

$$(\sum_{\substack{\tilde{\mathbf{u}}_{1}, \tilde{\mathbf{u}}_{2} \in \tilde{\mathbf{U}}_{1} \\ \tilde{y}_{1}, \tilde{y}_{2} \in \tilde{\mathbf{U}}_{2}}} (\xi_{1} + \xi_{2})((\tilde{\mathbf{u}}_{1}, \ddot{y}_{1}))(\xi_{1} + \xi_{2})((\tilde{\mathbf{u}}_{2}, \ddot{y}_{2})))$$

$$= c(G_{1} + G_{2}).$$

Hence
$$c(G_1) = c(G_{1\alpha}G_2)$$
. Similarly, $c(G_2) = c(G_{1\alpha}G_2)$. Therefore, $c(G_1) = c(G_2) = c(G_{1\alpha}G_2)$. The converse is trivial.

Theorem 17. For two unbiased APFGs G_1 and G_2 , G_1+G_2 is unbiased if and only if $c(G_1) = c(G_2) = c(G_1+G_2)$.

Proof. If G_1+G_2 is unbiased, then $c(G_1) \geq c(G_1+G_2)$ and $c(G_2) \geq c(G_1+G_2)$ and by Theorem 16, $c(G_1) = c(G_2) = c(G_1+G_2)$.

If $c(G_1) = c(G_2) = c(G_1 + G_2)$ and K is an APFS of $G_1 + G_2$, then we can find APFSs K_i of G_i for i = 1, 2 with $K \approx K_1 + K_2$. As G_1 and G_2 are unbiased and $c(G_1) = c(G_2) = m_1/k_1$, then $c(K_1) = a_1/b_1 \ge m_1/k_1$ and $c(K_2) = a_2/b_2 \ge m_1/k_1$. Thus $a_1k_1 + a_2k_1 \ge b_1m_1 + b_2m_1$ and hence $c(K) \ge (a_1 + a_2)/(b_1 + b_2) \ge m_1/k_1 = c(G_1 + G_2)$. Therefore, $G_1 + G_2$ is unbiased. \Box

We end this section with the following result which states that unbiased notion is preserved under isomorphism:

Theorem 18. Let G_1 and G_2 be isomorphic APFGs. If one of them is unbiased, then the other is unbiased.

Proof. Suppose G_2 is unbiased and let $\epsilon: \H{U}_1 \to \H{U}_2$ be a bijection such that $\xi_1(\H{u}) = \xi_2(\epsilon(\H{u}))$ and $\zeta_1(\H{u}\H{v}) = \zeta_2(\epsilon(\H{u})\epsilon(\H{v}))$ for all $\H{u}, \H{v} \in \H{U}_1$. Now $\sum_{\H{u} \in \H{U}_1} \xi_1(\H{u}) = \sum_{\H{u} \in \H{U}_2} \xi_2(\H{u})$ and $\sum_{\H{u}\H{v} \in \H{E}_1} \zeta_1(\H{u}\H{v}) = \sum_{\H{u}\H{v} \in \H{E}_2} \zeta_2(\H{u}\H{v})$. If $K_1 = (\xi_1, \zeta_1)$ is a APFS of G_1 with underlying set W, then $K_2 = (\xi_2, \zeta_2)$ is a APFS of G_2 with underlying set $\epsilon(W)$ where $\xi_2(\epsilon(\H{u})) = \xi_1(\H{u})$ and $\zeta_2(\epsilon(\H{u})\epsilon(\H{v})) = \zeta_1(\H{u}\H{v})$ for all $\H{u}, \H{v} \in W$. Since G_2 is unbiased, $c(K_1) \geq c(G_2)$ and so $2\frac{\sum_{\H{u}\H{v} \in \H{E}_1} \zeta_2(\epsilon(\H{u}) + \xi_2(\H{v}))}{\sum_{\H{u}, \H{v} \in \H{U}_1} (\xi_2(\H{u}) + \xi_2(\H{v}))} \geq 2\frac{\sum_{\H{u}\H{v} \in \H{E}_1} \zeta_2(\H{u}\H{v})}{\sum_{\H{u}, \H{v} \in \H{U}_1} (\xi_2(\H{u}) + \xi_2(\H{v}))}$. Hence

$$2\frac{\sum_{\S{y}\in \check{E}_1}\varsigma_1(\S{y})}{\sum_{\S{y}\in \check{U}_1}(\xi_2(\S{y})\wedge\xi_2(\mathring{y}))}\geq 2\frac{\sum_{\S{y}\in \check{E}_1}\varsigma_1(\S{y},\mathring{y})}{\sum_{\S{y}\in \check{U}_1}(\xi_2(\S{y})\wedge\xi_2(\mathring{y}))}.$$

Therefore, G_1 is unbiased.

References

- [1] T. Al-Hawary, Complete fuzzy graphs, *Inter. J. Math. Combin.*, 4 (2011), 26-34.
- [2] T. Al-Hawary, Complete Hamacher fuzzy graphs, *J. Appl. Math. and Infor.*, **40**, No 5-6 (2022), 1043-1052.
- [3] T. Al-Hawary, Certain classes of fuzzy graphs, Eur. J. Pure and Appl. Math., 10, No 2 (2017), 552-560.
- [4] T. Al-Hawary, S. Al-Shalaldeh and M. Akram, Certain matrices and energies of fuzzy graphs, TWMS J. Pure Appl. Math., 14, No 1 (2023), 50-68.
- [5] T. Al-Hawary, Density results for perfectly regular and perfectly edgeregular fuzzy graphs, J. Disc. Math. Scie. & Cryptography, 2, No 1 (2022), 1-10.
- [6] T. Al-Hawary, Maximal strong product and balanced fuzzy graphs, J. Appl. Math. and Infor., 41, No 5 (2023), 1145–1155.
- [7] M. Akram, D. Saleem, T. Al-Hawary, Spherical fuzzy graphs with application to decision-making, *Math. and Comp. Appl.*, **25**, No 1 (2020), 8-40.
- [8] T. Al-Hawary, On intuitionistic product fuzzy graphs, *Ital. J. Pure Appl. Math.*, **38**, (2017), 113-126.
- [9] T. Al-Hawary and M. Hashim, Semi-fuzzy graphs, To appear in: Bol. da Socie. Paran. de Matem.
- [10] T. Al-Hawary, Strong modular product and complete fuzzy graphs, To appear in: *Ital. J. Pure Appl. Math.*
- [11] K.R. Bhutani, On automorphism of fuzzy graphs, *Pattern Recognition Letter* **9**, (1989), 159-162.
- [12] S. Dogra, Different types of product of fuzzy graphs, *Prog. Nonlin. Dyn. Chaos*, **3**, No1 (2015), 41-56.
- [13] R. Muthuraj and A. Sasireka, On anti fuzzy graphs, Advances in Fuzzy Math., 12, No 5 (2017), 1123-1135.

[14] J.N. Mordeson and C.S. Peng, Operations on FGs, *Information Scie.*, **79** (1994), 381-384.

- [15] A. Nagoor Gani and B. Fathima Gani, Alpha product of fuzzy graphs, Adv. in Fuzzy Sets and Systems, 17, No 1 (2014), 27-48.
- [16] A. Nagoor Gani and J. Malarvizhi, Isomorphism on fuzzy graphs, *Int. J. Comp. and Math. Sci.*, **2**, No 4 (2008), 190-196.
- [17] A. Nagoor Gani and J. Malarvizhi, Isomorphism properties on strong fuzzy graphs, *Int. J. Algorithms, Comp. and Math.*, **2**, No 1 (2009), 39-47.
- [18] A. Nagoor Gani and K. Radha, On regular fuzzy graphs, *J. Phys. Scie.*, **12**, (2008), 33-40.
- [19] A. Rosenfeld, FGs, In; L.A. Zadeh, K.S. Fu, K. Tanaka and M. Shirmura (Eds), Fuzzy Sets and Their Applications to Cognitive and Processes, Academic Press. New York (1975), 77-95.
- [20] V. Ramaswamy and B. Poornima, Picture fuzzy graphs, *Inter. J. Comp. Sci. and Network Sec.*, **9**, No 1 (2009), 114-11.
- [21] M.S. Sunitha and A.V. Kumar, Complements of fuzzy graphs, *Indian J. Pure Appl. Math.*, **33**, No 9, (2002), 1451-1464.
- [22] L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.