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1. Introduction

In papers [1] – [5], we investigated some problems of the stability of oscillations
of magnetoelastic objects - conducting plates and shells in the presence of a
magnetic field. Particular attention was paid to the study of the oscillation
regime in the area of instability. It was shown that in such dynamic systems
with a diamagnetic gap, at certain speeds of motion of the interfaces, an area of
instability arises, as a result of which the amplitude of the oscillations increases.

In this paper, we study the effect of small nonlinear friction on the result of
oscillations in such a system. Friction is given by a small parameter, and thus
we have a problem with a small parameter. For its study, we use techniques
and methods dating back to the works of Poincaré, Van Der – Pol [6], N. M.
Krylov, N. N. Bogolyubov and Yu. A. Mitropolsky [7] – [9]. First of all, here
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we are talking about the asymptotic method [8] and the method of averaging
[7], [9].

2. Preliminary Notes

Let us consider a system formed by two thin ideally conducting plates of thick-
ness h, with bending D rigidity and material density ρ, separated by a vacuum
diamagnetic gap filled with a constant and uniform magnetic field directed along
the axis x. Let the plate z = 0 move along the axis x with the speed v0, and
the plate z = l is stationary.

The system of equations describing oscillations in the plates has the follow-
ing form [4]

ρh

(
∂

∂t
+ v0

∂

∂x

)2

ξ1 = −D∂
4ξ1
∂x4

− P1m, (1)

ρh
∂2ξ2
∂t2

= −D∂
4ξ2
∂x4

+ P2m,

where ξ (x, t) - small vertical displacements of the points of the plate surface
are proportional to exp (i (ωt− kx)), P1m and P2m- magnetic pressures on the
surface of the plates.

With transverse deformations in the plates, friction occurs equal to

Ff r = εf

(
∂ξ

∂t

)
, ε≪ 1. (2)

To take this force into account, we will add the friction force (2) to the right
side of each equation of system (1). Then we get

ρh

(
∂

∂t
+ v0

∂

∂x

)2

ξ1 = −D∂
4ξ1
∂x4

− P1m + εf

(
∂ξ1
∂t

)
, (3)

ρh
∂2ξ2
∂t2

= −D∂
4ξ2
∂x4

+ P2m + εf

(
∂ξ2
∂t

)
.

For convenience, we express the magnetic pressures on the surface of the
plates in terms of the potential Ψ :

P1m =
H0

4π
· ∂Ψ
∂x

at z = 0,

P2m =
H0

4π
· ∂Ψ
∂x

at z = l.
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Then system (3) takes the form

ρh

(
∂

∂t
+ v0

∂

∂x

)2

ξ1 = −D∂
4ξ1
∂x4

+ εf

(
∂ξ1
∂t

)
− H0

4π
· ∂Ψ
∂x

, (4)

ρh
∂2ξ2
∂t2

= −D∂
4ξ2
∂x4

+ εf

(
∂ξ2
∂t

)
+
H0

4π
· ∂Ψ
∂x

.

The potential Ψ in this case satisfies the equation

∂2Ψ

∂t2
+
∂2Ψ

∂x2
= 0 (5)

with boundary conditions

∂Ψ

∂z
= H0

∂ξ1
∂x

at z = 0,

∂Ψ

∂z
= H0

∂ξ2
∂x

at z = l.

If there is no friction, that is ε = 0, then the system of equations (4), (5)
admits a solution in the form

ξ1 = a1 cos θ1, ξ2 = a2 cos θ2, (6)

∂ξ1
∂t

= −a1ω sin θ1,
∂ξ2
∂t

= −a2ω sin θ2,

where
θ1 = ω t− k x+ ϕ1, θ2 = ω t− k x+ ϕ2 . (7)

Natural frequencies of oscillations in the absence of friction are determined
by the expression [4]

ω =
kv0
2

±

√

Ω2 +

(
kv0
2

)2

±
√

Ω4
0 + k2v20Ω

2.

The condition under which one of the roots becomes complex is determined
by the inequalities [4]

2v1Φ < v0 < 2v2Φ. (8)

In doing so

ω = ω 0 ± iδ, ω 0 =
1

2
kv0.
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3. Oscillation of plates in the presence of small non-linear friction

Let now in the system of equations (4) ε 6= 0. Since we have ε > 0, ε ≪ 1, we
can consider ε it a small parameter. Consequently, our problem becomes a
dynamic problem of studying oscillations with a small parameter. We use the
methodology proposed by N. N. Bogolyubov and N. M. Krylov [7]. We will
assume that a1, a2 from (6) and ϕ1, ϕ2 from (7) are new functions that are to
be determined. Performing the change of variables in the form (6), we obtain
the following system of equations for these new unknowns

cos θ1 ·
da1
dt

− a1 sin θ1 ·
dϕ1

dt
= 0,

ρh

(
−ω sin θ1 ·

da1
dt

− ω a1 cos θ1 ·
dϕ1

dt

)
= εf

(
dξ1
dt

)
,

cos θ2 ·
da2
dt

− a2 sin θ2 ·
dϕ2

dt
= 0,

ρh

(
−ω sin θ2 ·

da2
dt

− ω a2 cos θ2 ·
dϕ2

dt

)
= εf

(
dξ2
dt

)
.

We slightly transform this system of equations by introducing a function

f̂ (−ω ai sin θi) =
1

ρh
f (−ω ai sin θi) =

1

ρh
f

(
∂ξi
∂t

)
, i = 1, 2.

We get

cos θ1 ·
da1
dt

− a1 sin θ1 ·
dϕ1

dt
= 0,

−ω sin θ1 ·
da1
dt

− ω a1 cos θ1 ·
dϕ1

dt
= εf̂ (−ω a1 sin θ1) , (9)

cos θ2 ·
da2
dt

− a2 sin θ2 ·
dϕ2

dt
= 0,

−ω sin θ2 ·
da2
dt

− ω a2 cos θ2 ·
dϕ2

dt
= εf̂ (−ω a2 sin θ2) .

Solving this system of equations, we find dai
dt

and dϕi

dt
:

dai
dt

= − ε

ω
f̂ (−ω ai sin θi) sin θi,

dϕi

dt
= − ε

ω ai
f̂ (−ω ai sin θi) cos θi,
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where i = 1, 2.
To study the effect of friction on the oscillations of our system, it is necessary

to specify the friction.
Let the friction in the plates be given as [6], [8]

f

(
∂ξ

∂t

)
= −γ ∂ξ

∂t

(
1 + µ

(
∂ξ

∂t

)2
)
.

Using the averaging procedure [9], we obtain, in the first approximation, the
following system of equations for the functions.

Using the averaging procedure [9], we obtain, in the first approximation,
the following system of equations for the functions a and ϕ:

da

dt
=

1

2
ε
γ

ρh
a

(
1 +

3

4
µω2a2

)
,

dϕ

dt
= 0.

The solution to this system of equations has the form

a =
a0 exp

(
−1

2ε
γt
ρh

)

√
1 + 3

4µω
2a20

(
1− exp

(
−ε γt

ρh

)) , (10)

ϕ = const.

Thus, in the first approximation, the perturbation of the plates has the form
of a traveling wave, so that

ξ = Re
a0 exp

(
−1

2ε
γt
ρh

)
· cos (ωt− kx+ ϕ)

√
1 + 3

4µω
2a20

(
1− exp

(
−ε γt

ρh

)) . (11)

The frequency of oscillations in a wave in this approximation is equal to
the natural frequency of oscillations of the plate in the absence of friction, and
the amplitude decreases with time according to the law (10). If the speed of
the relative motion of the plates is in the interval determined by inequality (8),
then the frequency becomes complex. Let δ = Imω, δ ≪ ω0 = kv0

2 . Taking
this condition into account, solution (11) can be written in the form

ξ =
a0 exp

(
−1

2ε
γt
ρh

)
· chδt · cos (ω0t− kx+ ϕ)

√
1 + 3

4µω
2
0a

2
0

(
1− exp

(
−ε γt

ρh

)) .
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After analyzing this expression, we see that the regime of oscillation of
the plates depends on the relationship between the parameters δ and εγ

2ρh . If

δ < εγ
2ρh , then the oscillations of the plates will be damped. If δ > εγ

2ρh , then

the oscillations will be increasing. If δ = εγ
2ρh , then there will be a stationary

periodic regime of oscillations

ξ =
a0 · cos (ω0t− kx+ ϕ)

2
√

1 + 3
4µω

2
0a

2
0

= A cos (ω0t− kx+ ϕ) . (12)

The power dissipated in the system due to friction is determined in the form

P = Ffr
∂ξ

∂t
= γ

(
∂ξ

∂t

)2
(
1 + µ

(
∂ξ

∂t

)2
)
.

In the case of stationary periodic oscillations (12), the power in the system
is equal to In the case of stationary periodic oscillations (12), the power in the
system is equal to

P = γA2ω2
0sin

2 (ω0t+ ϕ)
(
1 + µA2ω2

0sin
2 (ω0t+ ϕ)

)
.

Averaging this expression over time, we obtain that the power dissipated in
the system, averaged over the period of oscillations, is equal to

P =
1

2
γA2ω2

0

(
1 +

3

4
µA2ω2

0

)
. (13)

Thus, the vacuum diamagnetic gap does not eliminate the dissipation of
the energy of the system and, consequently, friction during sliding, since the
calculated average power (13) can be considered as the power corresponding to
some effective friction force acting when the surfaces move.

4. Conclusion

The influence of small nonlinear friction in thin plates on the stability of a
rupture formed by a vacuum diamagnetic gap has been studied. It is shown that
the presence of small friction leads, under certain conditions, to the existence
of a stationary regime of oscillations in the area of instability. The average
power dissipating in the plates is determined, which corresponds to the effective
friction force acting when the plates are sliding, separated by a vacuum gap.

Thus, the presence of a diamagnetic gap leads to a specific instability, the
onset of which has the same form for all dynamic models considered by us.
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