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Abstract: The main purpose of this paper is to study the fractional-order
system with Caputo derivative associated to 3-dimensional Volterra model with
two controls. For this fractional system we investigate the existence and unique-
ness of solution of initial value problem, asymptotic stability of its equilibrium
states, stabilization problem using appropriate controls and numerical integra-
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1. Introduction

Fractional calculus is a field of mathematics based on a generalization of integer
derivatives to fractional order. The studies in this area are very important and
attractive because several phenomena have been described better by fractional
derivatives that take into account not only the local properties, but also global
correlations of dynamical systems ([25], [13], [23]). The fractional calculus has
deep and natural connections with many fields of science and engineering ([20],
[14],[19]).

In the last three decades, increasing attention has been paid to the study
of the dynamic behaviors (in particular, the chaotic behavior) of some classical
differential systems, as well as some fractional-order differential systems. For
example, the fractional models played an important role in applied mathematics
([16], [7], [9]), applied physics ([2], [24], [11]), study of biological systems ([1],
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[21], [15]), chaos synchronization and secure communications ([17], [8] and so
on.

2. Some theoretical aspects on fractional dynamical systems

In this section we introduce definitions and preliminaries facts which are used
in this paper.

There are several definitions of fractional derivatives. Omne of the more
commonly used is the Caputo definition, suitable for concrete applications. Let
f be a real-valued function which has infinitely many derivatives on R and
g € R,q > 0. The g-order Caputo differential operator ([4]) is defined by

Dif(t)=Jm 1™ (¢), ¢ >0, (1)

where f("™)(t) represents the m-order derivative of the function f, m € N* is
an integer such that m = [¢] + 1 (i.e. [g] denotes the integer part of ¢) and J¢
is the a- order Riemann-Liouville integral operator ([20]) as follows

1 t
Jo‘ft:/ t—s)*"Lf(s)ds, >0, 2
0= a7 [ =97 2
where T'(.) is the Euler’s gamma function. If ¢ = 1, then D] f(t) = %.
Related to (1) and (2), one has the following definition.

Definition 1. The Caputo fractional derivative of order ¢ > 0 for a
function f € C°°(R) is described by:

DU = iy | (t= " s, >0, 3)

I'(m—gq
In particular, the Caputo derivative of order ¢ € (0, 1] for a function f €
C*(R) is described by

DO = = [, =97 ()ds. a€0.1) (4)

'(l—gq
The Caputo derivative defined by (4) is often used in concrete applications.
In this paper we suppose that ¢ € (0, 1].

2

In the Euclidean space R™ with local coordinates {z',22,...,2"}, we con-

sider the following system of fractional differential equations:

DIzi(t) = fi(z'(t),22(¢),...,2"(t)), i=T1,n, (5)
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where ¢ € (0,1), fi € C*°(R",R), Djz'(t) is the Caputo fractional derivative
of order ¢ for i = 1,n and t € [0, 7) is the time.
The fractional dynamical system (5) can be written as follows:

Dix(t) = f(x(t)), (6)

where f(z(t)) = (fi(x'(t),...,2"(1)),. .., fa(z(t),...,2"(#)))T and Dz(t) =
(D{zt(t),...,Diz"™(t))T.
Consider the initial value problem with Caputo derivative for the system (6):

Dix(t) = f(z(t)), 2(0)==z9, t€lI=[0,T], T>0 (7)
where z: I — R", f:R" — R" is a continuous function and ¢ € (0,1).

Theorem 1. ([4]) Let by the initial value problem for the fractional system
(7). If the function f satisfies the following two assumptions:
(i) f is differentiable and bounded on D = {x € R"||z" — z}| < 6,i = 1,n}
for any 6 > 0.
(7i) f(x(t)) satisfies the Lipschitz condition, i.e. (3)L > 0, such that

[f (@) = fFy@)| < L-|a(t) —y@)],  (V)z(t),y(t) € D.

A point . = (z},22,...,2") € R" is said to be equilibriun point or equilib-
rium state of the system (5), if Dz'(t) =0 for i = 1, n.
The equilibrium states of the fractional dynamical system (5) are deter-

mined by solving the following set of equations:

£l (1), 2%(t), ..., a"(t) =0, i=T,n. (8)

Definition 2. ([20]) The equilibrium point z. of the system (5) is said to
be:
(7) (locally) stable, if for each € > 0, 3§ > 0 such that

[zel| <& = [z@®)] <&, (V)t>0. (9)
(7i) (locally) asymptotically stable, if it is stable and

limy_, o0 ||2(t) — || = 0, where || - || is the Euclidean norm.

The Jacobian matrix associated to system (5) is:

Iy = (5%

Proposition 1. ([17]) Let . be an equilibrium state of fractional system
(5) and J(z.) be the Jacobian matrix J(x) evaluated at x..

(1) e Is locally asymptotically stable, if and only if all eigenvalues A(J(x.))
of J(z.) satisfy:

), hi=1Ln



804 M. Ivan

largM(I @) > . (10)

(ii) x. is locally stable, if and only if either it is asymptotically stable, or the
critical eigenvalues satisfying |arg(A(J(z.)))| = % have geometric multiplicity
one.

(14i) e is locally unstable, if and only if there exists one eigenvalue \(J (z.))
of J(xz¢) such that |arg(A(J(z.)))| < qg

According to Proposition 1, it is easy to prove the following lemma.

Lemma 1. ([6]) Let z. be an equilibrium state of the fractional model
(5), \i, i =1,n the eigenvalues of J(z.) and q € (0,1).

(i) If one of the eigenvalues \;, i = 1,n is equal to zero or it is positive,
then x. is unstable.

(i1) If N\; <O, for all i =1,n, then wx. is asymptotically stable.

3. The 3—dimensional fractional Volterra model with two controls

The Volterra model were defined to describe population evolution in a hierar-
chical system by competing individuals ([5], [3]).

The n-dimensional fractional-order Volterra model on R" is defined by the
following fractional differential equations:

Diz'(t) = «'(t)(a"" (1) — 2"} (1), i=Tm, (11)
where z9(t) = 2"T(t) = 0,2" > 0, 2%,i = 1,n, are state variables and ¢ is
the time.

In particular, the 3-dimensional fractional Volterra model is defined by the
following three differential equations on R3:

Diz'(t) = z'(t)z*(1),
Dia*(t) = a*(t)(z°(t) — (1)), q € (0,1), (12)
Diz3(t) = —z(t)z3(t).

In this section we introduce the (3—dimensional) fractional Volterra model
with two controls around axes Oz? and Oaz®. This fractional model is associ-
ated to system (12) and it is defined by:

Diz'(t) = a'(t)a(t),
Diz%(t) = —a*(t)2%(t) +22(t)23(t) — az®(t), q€(0,1), (13)
Diz3(t) = —z%(t)23(t) — b3 (),
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where a,b € R* are parameters.
If we substitute ¢ =1 and a =0b=0 in the fractional model (13), then
the 3—dimensional Volterra model is obtained.

Remark 1. Differential systems of the Volterra model type have been
studied from various research directions by many authors. From the point
of view of Poisson geometry, Volterra model was researched in [22], and as
metriplectic system it was investigated in [12].

In the following, the existence and uniqueness of solution of initial value
problem for the fractional system (13) are proved.

The initial value problem of the fractional system (13) can be represented
in the following matrix form:

D&x(t) = x?(t)Az(t) + Bz(t), z(0) = o, (14)

where 0 < ¢ < 1, z(t) = (z'(t),2%(t),23(t))", t € (0,7) and

1 0 0 0 0 0
A= -10 1 |, B=[0 —a 0
0 0 —1 0 0 —b

Proposition 2. The initial value problem of the fractional Volterra model
with two controls (13) has a unique solution.

Proof. Let f(x(t)) = x?(t)Ax(t) + Bz(t). It is continuous and bounded on
D={zeR3 2’ €z)—6z,+0d]},i=1,3for any 6 > 0. We have
F () — F(y()) = 22(5) Ax(t) — g2 (1) Ay(t) + B () — By(t) = g(t)+ h(t), where
g(t) = 22(t)Ax(t) — y*(t)Ay(t) and h(t) = Bx(t) — By(t). Then

(@) [f(x(t)) = Fly(@)] < [g(t)] + | (t)].
Using reasoning analogous to that in the proof of Proposition 2.1 in [10], we
can show that:

®) g < (Al +1y*@®)]) - l=(t) —y(®)] and  [p(t)] < | B]|-|2(t) —y()].

According to (b) the relation (a) becomes

(©) |f(@®) = Fly)] < (JAI+ Bl + [y*@)]) - [2(t) — y(@)].

Replacing ||A|| = 2, ||B|| = Va? + b? and using the inequalities

lyi(t)| < |xo| +6, i = 1,3 from the relation (c), we deduce that

(d) |f@)—fly®) < L-lz@)—y®)], L=2+Va*+b*+2[xe|+0 > 0.

The inequality (d) shows that f(x(t)) satisfies a Lipschitz condition. Based
on the results of Theorem 1, we can conclude that the initial value problem of
the system (13) has a unique solution. O

For the fractional system (13) we introduce the following notations:
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fi(z) = 2'2?,  fo(z) = —xta? + 2%% —aa®,  fy(x) = —2%2® — b2 (15)

Proposition 3. The equilibrium states of the fractional Volterra model
with two controls (13) are given as the following family:

E :={ep=(0,0,0)} U{e=(0,—b,a)} U{el"=(m,0,0) € R3] meR*}.

Proof. The equilibrium states are solutions of the equations f;(z) =0,i =
1,3 where f;, i = 1,3 are given by (15). O

4. Main results

4.1. Stability analysis of the fractional Volterra model (13)

In this subsection we present the study of asymptotic stability for the
equilibrium states of the fractional system (13). For this study we apply the
Matignon’s test (Proposition 1).

The Jacobian matrix associated to system (13) is:

z? z! 0
J(z,a,b) = [ —22 —z'+23—a z?
0 —z3 —z2—b

Proposition 4. Let be the fractional system (13) and the equilibrium
state e = (0, —b,a) € E.
1. b>0.
(1) If a>0, thene is unstable (¥)q € (0,1).
(19) If a <0, then e is asymptotically stable (V)q € (0,1).
2. b<0. If a€ R*, then e is unstable (¥)q € (0,1).

Proof. The characteristic polynomial of

-b 0 O
J(ev a, b) = b 0 —b
0 —a O
IS prean(A) = det(J(e,a,b) — A) = —(X + b)(A\* — ab). The equation

PJ(e,ap)(A) = 0 has the roots A\; = —b and g3 = ++/ab.

1. Case b>0 and ¢ € (0,1). Then A\ = —b<0.
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(1) We suppose a > 0. Then Mgz = +v/ab € R. In this case, J(e,a,b)
has a positive eigenvalue and by Lemma 1(i), e = (0, —b,a) is unstable.

(ii) We suppose a < 0. Then Mg3 = +iy/—ab. We have |arg(\1)| =7 >
r and |arg(Ae3)| =5 > 4 for all ¢ € (0,1). By Proposition 1(i), it implies
that e = (0, —b,a) is asymptotically stable. Hence, the assertions 1(7) — (i7)
hold.

2. Case b< 0, ac€ R* and ¢ € (0,1). Since \; = —b>0, J(e,a,b) has
at least a positive eigenvalue. Then, by Lemma 1(i), e = (0,—b,a) is unstable.
Hence, the assertion 2 holds. O

Proposition 5. The equilibrium states ey and ey € E are unstable
(V)g € (0,1).

0 m 0
Proof. We have J(e",a,b) = | 0 —m—a 0 . Its characteristic
0 0 —b

polynomial, for m € R, is
Pier ap)(A) = det(J(e]", a,b) — AI) = =A(A+a+m) (A + D).

The equation pjm qp)(A) = 0 has the root A\; = 0. By Lemma 1(i), follows
that ey and e]" are unstable for all ¢ € (0,1). O

4.2. Controllability of chaotic behaviors of the fractional Volterra
model (13)

In this subsection we will discuss how to stabilize the unstable equilibrium
states of the fractional system (13) via Caputo fractional derivative. For this
purpose we will apply the general method for to control the stability of (13 at
an equilibrium point [6].

Let x. be an unstable equilibrium point of the 3—dimensional fractional
Volterra model with two controls (13). We associate to (13) a new fractional-
order system with (external) controls and given by:

Diz'(t) = 2 (t)x2(t) +ui(2),
Dfx2(t) = —2'(t)2?(t) + 22(t)23(t) — ax®(t) + ua(t), ¢€(0,1), (16)
Diz3(t) = —2%(t)x3(t) — ba(t) + us(t),

where wu;(t),i = 1,3 are control functions.
We take the control functions u;(t),7 = 1,3, given by:

ur(t) = k(z'(t) — 2l), wa(t) =0, ws(t)=0, kecR" (17)

e
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With the control functions (17), the system (16) becomes:

Diz'(t) = a'(t)a*(t) + k(z'(t) — 2),
Diz%(t) = —zt(t)2%(t) +22(t)23(t) — az®(t), q € (0,1), (18)
Dix3(t) —22(t)x3(t) — ba3(t),

where k£ € R* is a control parameter.

The fractional system (18) is called the controlled fractional Volterra model
associated to (13) at ..

If one selects the appropriate parameters a,b,k € R* which then make
the eigenvalues of the linearized equation of (18) satisfy one of the conditions
from Proposition 1, then the trajectories of (18) asymptotically approaches the
unstable equilibrium state z. in the sense that lim o ||z(t) — x| = 0. In
the case when . is unstable, then fractional model (18) may exhibit chaotic
behavior.

The Jacobian matrix of the controlled fractional model (18) is:

2?24k x! 0
J(z,a,b,k) = —2?  —zt 42 —a x?
0 —x3 e

Theorem 2. Let be the fractional system (18) and eg = (0,0,0).
1. k<.
(¢) If a>0 and b>0, then ey is asymptotically stable (¥)q € (0,1).
(4i) If a<0 and b<0 or ab< 0, then ey is unstable (V)q € (0,1).
2. k>0. If a,b€ R*, then eg is unstable (¥)q € (0,1).

Proof. The characteristic polynomial of

k0 0
J(eo,(l, ba k) = 0 —a O
0O 0 -b

1S Preo,abk)(A) = det(J(eo, a,b, k) = AI) = —(A = k)(A+a)(A+b). The roots
of equation pjc,apr)(A) =0 are \; =k, Ao = —a, A3 = —b.

1. Case k<0 and g€ (0,1). Then A; <O.

(1) We have X2 < 0 and A3 <0 < a >0 and b > 0. Then
i <0,i=1,3 and by Lemma 1 (ii), ey is asymptotically stable.

(i) We suppose a < 0 and b < 0 or ab < 0. Then J(ep,a,b,k)

has at least a positive eigenvalue and by Lemma 1(i), eg is unstable. Hence,
1(4) — (47) hold.
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2. Case k>0 and g€ (0,1). Since A >0, J(ep,a,b, k) has at least a
positive eigenvalue (V)a,b € R*. Then ey is unstable. Hence, the assertion 2
holds. U

Theorem 3. Let be the system (18) and e} = (m,0,0) € E.

1. k<0 and q€(0,1).

(1) If b>0, then e is asymptotically stable for all m € (—a,00) and
unstable for all m € (—o0, —a).

(i9) If b<0, then e}* is unstable for all a,m € R*.

2. k>0 and ¢ € (0,1). The equilibrium state e}* is unstable for all
a,b,m € R*.

k m 0
Proof. We have J(eT",a,b, k) = 0 —a—m 0 . Its characteristic
0 0 —b

polynomial is pj(em apk)(A) = —(A—k)(A+a-+m)(A+b). The roots of equation
pJ(egn’G/’b’k)()\) =0 are \{ =k, o= —a—m, A3 = —b.

1. Case k<0 and ¢ € (0,1). Then A\ <O.

(1) We suppose b > 0. Then A3 < 0. We have )\; < 0,i=1,3 if and
only if m € (—a,00). By Lemma 1(ii), e]® is asymptotically stable. Also,
for m € (—oo,—a) it follows that Ay >0 and J(e{",a,b, k) has a positive
eigenvalue. According to Lemma 1(i), e}* is unstable (¥)m € (—o0, —a).

(17) We suppose b < 0. Then A3 >0 and J(e[",a,b, k) has at least
a positive eigenvalue. By Lemma 1(i), e]* is unstable (V)a,m € R*. Hence,
1(2) — (i7) hold.

2. Case k>0 and ¢ € (0,1). Since Ay >0, J(ef",a,b,k) has a
positive eigenvalue (V)a,b,m € R*. Then e]" is unstable. Hence, the assertion
2 holds. ]

4.3. Examples

Example 1. Let be the 3-dimensional fractional-order Volterra model with
controls k,a,b described by (18).

(1) We select k= —0.65, a =0.15 and b= 0.32. According to Theorem
2.1(3), it follows that ey = (0,0,0) is asymptotically stable for all ¢ € (0, 1).

(2) We consider kK = —1,a = 1 and b = —0.7. Applying Theorem
2.1(41), it follows that ey = (0,0,0) is unstable for all ¢ € (0,1). In other
words, in this case the fractional model (18) behaves chaotically around the
equilibrium point eg.

(3) We consider k=1,a=-2 and b= —1.5. Applying Theorem 2.2,
it follows that ep = (0,0,0) is unstable for all ¢ € (0,1).
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Example 2. Let be the 3-dimensional fractional-order Volterra model with
controls k,a,b described by (18).

(1) We select k= —0.6, b =009, a= -2 and ¢ = 0.73. According
to Theorem 3.1(7), e;1 = (2.01,0,0) 1is asymptotically stable and ejs =
(1.98,0,0) is unstable.

(2) We consider k£ = 1.2, a =0.4 and b= —0.25. Applying Theorem
3.2, e13 = (—0.8,0,0) is unstable for all ¢ € (0,1).

Remark 2. The study of the dynamics of metriplectic systems and frac-
tional systems associated with Volterra-type or Toda-type lattices has been
addressed in a series of papers, such as ([3], [12], [8]).

5. Numerical integration of the controlled fractional Volterra model

In this section we apply the fractional Euler’s method (FEM) to numerically
integrate the controlled fractional Volterra model (18). For the description and
application of FEM’s can be consulted ([18], [23]).

Consider the following general form of the initial value problem (IVP) with
Caputo derivative [18]:

Diy(t) = f(t,y(t), y(0)=yo, tel=][0,T], T >0, (19)

where y: I — R", f:R"™— R" is a continuous function and ¢ € (0, 1).
Every solution of the initial value problem given by (19) is also a solution
of the following Volterra fractional integral equation:

y(t) = y(0) + I f(t,y(1)), (20)

where I is the g—order Riemann-Liouville integral operator. Moreover, every
solution of (20) is a solution of the (IVP) (19).

To integrate the fractional equation (19), means to find the solution of (20)
over the interval [0,7]. In this context, a set of points (¢;,y(t;)) are produced
which are used as approximated values. The interval [0, 7] is partitioned into
n subintervals [t;,¢;11] each equal width h = %7 tj =jhfor j=0,1,...,n.
It computes an approximation denoted as y;y1 for y(tj+1), 7 =0,1,....

The general formula of the fractional Euler’s method for to compute the
elements y;, is

hd

Yjr1 = yj + I f(ti,y(ty),  tiqi=tj+h, j7=01,..,n. (21)

q+1)
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We will now apply the above considerations to the controlled fractional-order
Volterra model (18). For this, consider the following fractional differential
equations

{ Diz'(t) = Fy(«'(t),2%(t),2°(t)), i =1,3, te(to,7), ¢€(0,1) (22)
z(to) = (2'(to), 2*(t), 2’ (to)),
where
Fi(z(t) = 2'()2%(t) + k(' (t) — z2),
Fy(x(t)) = —al(t)z?(t) + 22(t)z3(t) — az®(t), a,b,k € R* (23)
F3(z(t)) = —2%2(t)23(t) — ba3(2).

Since the functions Fj(z(t)),7 = 1,3 are continuous, the initial value prob-
lem (22) is equivalent to system of Volterra integral equations, which is given
as follows:

() = 29(0) + IIF(2x'(t),2%(t),2%(t)), i=1,3. (24)

The system (24) is called the Volterra integral equations associated to con-
trolled fractional-order Volterra model (18).

For the numerical integration of the system (22) one can use the fractional
Euler’s method (the formula (21) ), which is expressed as follows:

B 1) = () + = RGN0 0), i=T3 (@)

I(g+1
where j =0,1,2,...., N,h = %,T> 0,N > 0.

More precisely, the numerical integration of the fractional system (22) is
given by:

P+ 1) =2 () + e F(ql+1)<x1<j>x2<j> k() - 21))
22(j+1) =a2%(j) + h? m(—xl(j)ﬂfQ(j)
+a2(5)2? (§) — ax®(j)) (26)
Bi+1) =23() + he F(;m(x%)x?’(j) )
7¢(0) =2l +e i=1,3.

Example 3. Let us we present the numerical integration of the controlled
fractional-order Volterra model with two controls which has considered in Ex-
ample 2.1(). For this we apply the algorithm (26) and software Maple or
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Mathematica. Then, in (26) we take: a = —2,b = 0.9 and k = —0.6. It is
known that the equilibrium state ej; = (2.01,0,0) is asymptotically stable for
q=0.73.

Remark 3. Appyling (26) and the Mathematica package for the numer-
ical simulation of solution of fractional model (18) for each set of values for
parameters a,b, k, given in the Examples 1 and 2, it will be found that the
results obtained are valid.

6. Conclusions

This paper presents a 3-dimensional fractional-order Volterra model with two
controls, denoted by (13). The fractional model (13) was studied from fractional
differential equations theory point of view: asymptotic stability, determining of
sufficient conditions on parameters a, b, k to control the chaos in the controlled
fractional system associated to (13) and numerical integration of the fractional
model (18). The study of chaotic fractional systems has appplications in the-
ory of chaos synchronization and secure communications. In this context, by
choosing the right a,b and k in the fractional model (18), this work offers a
series of chaotic and non-chaotic fractional differential systems.
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