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1. Introduction

Necessity of studying the asymptotics and distributions of zeros of entire func-
tions arises when studying the spectrum of a differential operator [1], [2, Chap-
ter 5]. The works [3] - [8] are devoted to the study of zeros of entire functions
that have an integral representation.

Asymptotic properties of entire functions with a given distribution law of
roots were deeply studied in the doctoral dissertation of V.B. Sherstyukov,
based on which the paper [9] was published.

Meromorphic functions of completely regular growth in the upper half-plane
with respect to the growth function are studied in [10]. The issues of the location
of zeros of an entire function: on one ray, on a straight line, on several rays,
in an angle or arbitrarily in the complex plane have been studied in numerous
works [1], [11] [19].

Connection between zeros of entire functions of exponential type with spec-
tral problems is reflected in [5] - [8], [16] - [21].

2. Statement and discussion of the problem

We consider the question of distribution of zeros of an entire function of the
form:

∆1 (λ) = e−λ − eλ −
1∫

−1

eλt · Φ (t) dt, (1)

where Φ (t) is a continuous function and satisfies the condition:

Φ (−1) = Φ (1) = 1. (2)

Eigenvalue problems for certain classes of differential operators on an in-
terval are reduced to a similar problem. In particular, the following eigenvalue
problem in the space W 1

2 (−1, 1) for a loaded first-order differential operator
on the interval leads to the studied question:

L1y = y′ (t) + Φ (t) y (1) = λy (t) , (3)

with the boundary value problem

y (−1) = y (1) , (4)

where Φ (t) is a continuous function and satisfies the condition (2).
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Spectral questions, more precisely, questions on basis property of root func-
tions of loaded differential operators were studied in the works [22] - [24], which
the method of spectral decompositions by V.A. Ilyin [25] are extended to the
case of loaded differential operators. The main fundamental feature of such
problems is their non-self-adjointness. This causes the main difficulties in study-
ing perturbed differential operators. Another variant of perturbation of regu-
lar, but not strongly regular, boundary value problems was studied in [26] -
[30], [7], [21]. In the monograph by B.E. Kanguzhin and M.A. Sadybekov [7],
the basic properties of the system of root vectors of Sturm-Liouville boundary
value problems on a finite segment were studied in the space of quadratically
summable functions, irregular by Birkhoff, where the effect was noted when the
same Sturm-Liouville boundary value problem, depending on properties of the
potential, can have discrete or continuous spectrum.

The essence of the problem statement is that it is required to find those
complex values λ, for which the operator equation (3) has non-zero solutions.

3. Characteristic determinant of the spectral problem (3) - (4)

Assuming y (1) to be some independent constant, we make sure that the general
solution of the equation (3), for λ 6= 0, can be represented in the form:

y (t) = Ceλt − eλ · y (1) ·
t∫

−1

eλξ · Φ (ξ) dξ, (5)

Thus, assuming first t = −1, and then satisfying (5) with the boundary
value condition (4), we obtain the system of two equations, which can be rep-
resented in vector-matrix form:


 eλ − e−λ eλ

1∫
−1

eλξ · Φ (ξ) dξ

e−λ −1


 ·
[

C
y (1)

]
=

[
0
0

]
.

By using simple calculations, we find that the characteristic determinant
∆1 (λ) of the spectral problem (3) - (4) is represented in the form (1), which
is an entire analytical function of the variable λ = x+ iy, Reλ = x, Jmλ = y,
i =

√
−1. Further, we research zeros of the entire function ∆1 (λ), which

adequately determine eigenvalues of the loaded differential operator L1.
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4. The main result

Due to the well-known theorem of Rouchet [31], we introduce the function in
(1):

∆1 (λ) = ∆0 (λ)− f (λ) ,

where

∆0 (λ) = e−λ − eλ, f (λ) =

1∫

−1

eλtΦ (t) dt,

which each of these functions are entire analytic functions. We estimate the
function ∆0 (λ) from below |∆0 (λ)| ≥ e|λ| − e−|λ| ≥ ex − e−x.

We study distribution of zeros of the entire function f (λ) separately. We
divide the segment [−1, 1] into 2m equal parts.

Hence, the function f (λ) has the following form:

f (λ) =

1∫

−1

eλtΦ (t) dt

=

−2(m−1)
2m∫

−1

eλtΦ (t) dt+

2(2−m)
2m∫

−2(m−1)
2m

eλtΦ (t) dt+

2(3−m)
2m∫

2(2−m)
2m

eλtΦ (t) dt+ ...

+

1∫

2(m−1)
2m

eλtΦ (t) dt =
m∑

P=−m+1

P
m∫

P−1
m

eλtΦ (t) dt.

Transform the function f (λ):

f (λ) =
m∑

P=−m+1

P
m∫

P−1
m

eλtΦ (t) dt

=
m∑

P=−m+1

P
m∫

P−1
m

eλt
[
Φ (t)− Φ

(
P

m

)
+Φ

(
P

m

)]
dt
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=
m∑

P=−m+1

P
m∫

P−1
m

eλtΦ

(
P

m

)
dt+

m∑

P=−m+1

P
m∫

P−1
m

eλt
(
Φ (t)− Φ

(
P

m

))
dt.

We show that f (λ) does not have zeros out of the domain (|x| ≤ n ·r ·ω
(
1
r

)
,

for some n). Due to Rouchet’s theorem [22], we introduce:

h (λ) =
m∑

P=−m+1

P
m∫

P−1
m

eλtΦ

(
P

m

)
dt,

and

G (λ) =
m∑

P=−m+1

P
m∫

P−1
m

eλt
(
Φ (t)− Φ

(
P

m

))
dt.

Let Reλ > 0. We calculate the integrals included in the function h (λ).

h (λ) =
m∑

P=−m+1

Φ

(
P

m

)
1

λ

(
eλ

P
m − eλ

P−1
m

)

=
1

λ

[
Φ

(
−1 +

1

m

)
·
(
eλ(−1+ 1

m) − e−λ
)

+Φ

(
−1 +

2

m

)
·
(
eλ(−1+ 2

m) − eλ(−1+ 1
m)
)
+ ...

+Φ

(
1− 2

m

)
·
(
eλ(1−

2
m) − eλ(1−

3
m)
)

+Φ

(
1− 1

m

)
·
(
eλ(1−

1
m) − eλ(1−

2
m)
)]

=
1

λ

[
eλ(−1+ 1

m)
(
Φ

(
−1 +

1

m

)
− Φ

(
−1 +

2

m

))

+eλ(−1+ 2
m)
(
Φ

(
−1 +

2

m

)
− Φ

(
−1 +

3

m

))

+eλ(−1+ 3
m)
(
Φ

(
−1 +

3

m

)
− Φ

(
−1 +

4

m

))
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−Φ

(
−1 +

1

m

)
e−λ + ...

+ eλ(1−
1
m)
(
Φ

(
1− 1

m

)
− Φ (1)

)
+Φ(1) · eλ

]
.

Grouping the exponentials in pairs, we have:

h (λ) =
1

λ

[
eλ(−1+ 1

m)
(
Φ

(
−1 +

1

m

)
− Φ

(
−1 +

2

m

))

−Φ

(
−1 +

1

m

)
e−λ +Φ(−1) e−λ − Φ (−1) e−λ + ...

+eλ(1−
1
m)
(
Φ

(
1− 1

m

)
− Φ (1)

)
+Φ(1) · eλ

]

=
1

λ

[
eλ(−1+ 1

m)
(
Φ

(
−1 +

1

m

)
− Φ

(
−1 +

2

m

))

+e−λ

(
Φ (−1)− Φ

(
−1 +

1

m

))
− Φ (−1) · e−λ + ...

+ eλ(1−
1
m)
(
Φ

(
1− 1

m

)
− Φ (1)

)
+Φ(1) eλ

]
.

Denote:

h1 (λ) =
1

λ

[
Φ (1) eλ − Φ (−1) e−λ

]
=

1

λ

[
eλ − e−λ

]
,

and

g (λ) =
1

λ

[
eλ(−1+ 1

m) ·
(
Φ

(
−1 +

1

m

)
− Φ

(
−1 +

2

m

))

+e−λ ·
(
Φ (−1)− Φ

(
−1 +

1

m

))
+ ...

+eλ(1−
1
m) ·

(
Φ

(
1− 1

m

)
− Φ (1)

)]

=
1

λ

m∑

P=−m+1

eλ
P−1
m ·

(
Φ

(
P − 1

m

)
− Φ

(
P

m

))
.

Then

µ (λ) = G (λ) + g (λ)
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=
m∑

P=−m+1




P
m∫

P−1
m

eλt
(
Φ (t)− Φ

(
P

m

))
dt

+
eλ(

P−1
m )

λ

(
Φ

(
P − 1

m

)
− Φ

(
P

m

)))
.

We will estimate the function h1 (λ) from below, at the same time as the
remaining terms, that is, the function µ (λ) is estimated from above:

|h1 (λ)| =
∣∣∣∣
1

λ
·
(
eλ − e−λ

)∣∣∣∣ ≥
1

|λ|e
λ − 1

|λ| ·
∣∣∣∣O=
(
e−λ
)∣∣∣∣ . (6)

We estimate from above the function µ (λ):

|µ (λ)| ≤
m∑

P=−m+1




P
m∫

P−1
m

∣∣∣eλt
∣∣∣ ·
∣∣∣∣Φ (t)− Φ

(
P

m

)∣∣∣∣ dt

+
eλ(

P−1
m )

|λ| ·
∣∣∣∣Φ
(
P − 1

m

)
− Φ

(
P

m

)∣∣∣∣

]

≤
m∑

P=−m+1




P
m∫

P−1
m

ext · sup
P−1
m

≤t≤ P
m

∣∣∣∣Φ (t)− Φ

(
P

m

)∣∣∣∣ dt

+
ex(

P−1
m )

|λ| · sup
|t−τ |≤ 1

m

|Φ (t)− Φ (τ)|
]
.

We introduce the modulus of continuity of the function Φ (t), by using the
formula:

ω

(
1

m

)
< sup

|t−τ |≤ 1
m

|Φ (t)− Φ (τ)| .

Then

|µ (λ)| ≤
m∑

P=−m+1




P
m∫

P−1
m

ext · ω
(
1
m

)
dt+ ex·

P−1
m

x
· ω
(
1
m

)



= ω
(
1
m

)
· ex−e−x

x

(7)
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Therefore, due to (6), (7), we come to the estimation:

|f (λ)| ≥ 1

|λ|e
x − 1

|λ|

∣∣∣∣
=
O

(
1

|λ|

)∣∣∣∣− ω

(
1

m

)
·
(
ex + e−x

x

)
.

.
Considering that |λ| = r, m = [r], we get:

|λf (λ)| = |f1 (λ)| ≥ ex − ex · ω
(
1
r

)
· r

x
− e−x − e−x · r · ω

(
1
r

)

x
. (8)

For the final statement, we choose n, so that
∣∣∣∣∣
ω
(
1
r

)
· r

x

∣∣∣∣∣+ e−2x + e−2x · r · ω
(
1
r

)

x
<

1

2

when x > n · r · ω
(
1
r

)
. This is possible, because value of the left-hand side of

the last inequality is determined in the main first term.
According to the conditions of Rouchet’s theorem [31], determining the

main part of the function ∆1 (λ), taking into account the lower bounds of the
functions ∆0 (λ) and f1 (λ) in (8), that is |∆0 (λ)| > |f1 (λ)|, we get the following
theorem.

Theorem 1. If the function Φ (t) is continuous on the segment [−1, 1]
and satisfies the condition (2), then all zeros of the entire function ∆1 (λ), that
is, all eigenvalues of the loaded first-order differential operator L1 belong to the
strip |Reλ| < n · r · ω

(
1
r

)
for some n, where λ = x + iy, Reλ = x, ω (δ) is the

modulus of continuity of the function Φ (t), r = |λ|.

Remark 2. If Φ (t) is continuous on the segment [−1, 1] and Φ (−1) =
Φ (1) = 1, all zeros of the entire function ∆1 (λ), that is, all the eigenvalues of
the loaded differentiation operator L1 are concentrated in some vertical strip
on the complex plane λ, which expands depending on the properties of the
ω (δ)-modulus of continuity of the function Φ (t).

Theorem 3. Let Φ (t) be a continuous function on [−1, 1] and the condi-
tion (2) hold. Then the set of zeros of the entire function ∆1 (λ), that is, all the
eigenvalues of the loaded (“perturbed”) operator L1 of the spectral problem (3)
- (4) form a countable set and the asymptotic formula for the (zeros ∆1 (λ))
eigenvalues of the loaded operator L1 is valid as n→ ∞, λn = iπn+O

=

(
nω
(
1
n

))
,

where ω (h) is the modulus of continuity of Φ (t).
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Proof. In the proof of Theorem 1, we introduced two functions h1 (λ) and
µ (λ), such that f (λ) = h1 (λ)+µ (λ). Zeros of the functions ∆0 (λ) and h1 (λ)
have the form λ0n = iπn, n = ±1, ±2, .... We consider a square T with a side
2ε, centered at the point λ0n on the complex plane λ. We assume that the sides
of T are parallel to the real and imaginary axes of the variable λ. The proof of
Theorem 3 consists in choosing ε such that the conditions of Rouchet’s theorem
[31] are satisfied for the functions ∆0 (λ), h1 (λ) and µ (λ) on the sides of the
square T . First, we consider the right half of the square T , that is, in this case
Reλ ≥ 0. Now, we divide the side of the square T into two parts 0 ≤ Reλ ≤ C
and C ≤ Reλ ≤ ε, where C > 0, the choice of which will be made later.

4.1 case. Let 0 ≤ Reλ ≤ C. Since zeros of the functions ∆0 (λ) and
h1 (λ) identically coincide and these functions are equal to each other, so it is
enough to estimate the function h1 (λ). Let’s compare modules of the functions
h1 (λ) ·e−λ and µ (λ) ·e−λ. Taking boundedness of the corresponding derivative
into account, we obtain the estimate:

∣∣∣h1 (λ) · e−λ
∣∣∣ =

∣∣∣h1 (λ) · e−λ − h1
(
λ0n
)
· e−λ0

n

∣∣∣ =

=

∣∣∣∣
d

dλ
h1 (λ) · e−λ

∣∣∣∣ ·
∣∣λ− λ0n

∣∣ ≥ C1

|λ| · ε.

According to boundedness of modules of the exponents, included in µ (λ)
we write the inequality:

∣∣∣µ (λ) · e−λ
∣∣∣ ≤ C2 · ω

(
1

n

)
.

Therefore, for conditions of Rouchet’s theorem it is enough to take ε from
the requirement:

ε = O
=

(
nω

(
1

n

))
,

since module λ behaves like λ = n
(
1 +

=
O(1)

)
.

4.2 case. Let C ≤ Reλ ≤ ε. For C > 0 the module h1 (λ) is estimated by
the module of one of the exponents included in h1 (λ):

|h1 (λ)| =
∣∣∣∣
eλ − e−λ

λ

∣∣∣∣ ≥
1

2
· e

x

|λ| .

.
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Note, that C should be chosen from the inequality C > lnϕ. Since the
modules of the exponents included in the function µ (λ) are overestimated by
the next exponent ex, then

|µ (λ)| ≤ ex · ω
(
1

n

)
· C3.

.

It implies that for conditions of Rouchet’s theorem [31] it is enough to take
ε from the constraint of the form:

ε = O
=

(
nω

(
1

n

))
.

Thus, Theorem 3 is completely proved. ⋄

Remark 4. One of the features of the considered problem is that the
adjoint to (3) - (4) is the spectral problem for the differentiation operator with
a “perturbed” integral boundary value condition:

L∗
1v ≡ v′ (t) = λv (t) , −1 ≤ t ≤ 1 (9)

v (−1) = v (1) +

1∫

−1

v (t) Φ (t) dt, (10)

where Φ (t) is a continuous function on the segment [−1, 1] and satisfies the
condition (2).

5. Case Φ (t) ≡ 0

If Φ (t) ≡ 0, we get that ∆0 (λ) = e−λ − eλ is a characteristic determinant of
the “unperturbed” spectral problem:

L0y = y′ (t) = λy (t) , −1 ≤ t ≤ 1, y (−1) = y (1) . (11)

Eigenvalues of the “unperturbed” operator L0 are the numbers λ0n = inπ,
n = ±1, ±2, ±3, ..., and the corresponding eigenfunctions are y0n0 (t) = C ·einπt,
∀C > 0, which form a complete orthonormal system and Riesz basis in the space
L2 (−1, 1).
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In [21], [32], it is studied the case when Φ (t) is a function of bounded varia-
tion and satisfies the condition (2), where the spectral parameter λ is included
in the boundary value condition for integral perturbations, which proves that
the systems of eigenfunctions of the “unperturbed” operator

{
y0n0 (t)

}
and the

“perturbed” operator {yn1 (t)} are quadratically close in L2 (−1, 1), therefore
the system {yn1 (t)} forms a Riesz basis in L2 (−1, 1), but are not orthonormal.

The fundamental difference of this work is that the function Φ (t) is contin-
uous, which causes certain difficulties in the proof.

In the case of λ = 0, we have y (t) = C 6= 0, that is, λ0 = 0 is the eigenvalue
of the loaded differentiation operator L1.
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