THE GENERALIZED MITTAG-LEFFLER FUNCTION
OF MATRIX ARGUMENT AND THE MODELING
OF A VISCO-ELASTIC SYSTEM

Abstract


Abstract. The Prabhakar or three parameter Mittag-Leffler function of a matrix ${\rm\; }A\in \Re ^{n\times n} $ is shown to play a key role in the analysis of visco-elastic systems. The matrix $\textit{A}$ is allowed to be defective; and for which two methods are presented for the evaluation of the function. One is the spectral method; the second is the Cayley-Hamilton theorem which does not need a knowledge of the eigenvectors. An engineering application is presented by obtaining the solution of a viscoelastic Burgers model. Some strict bounds for the Mittag-Leffler function are also obtained under perturbations of the matrix $A$.

Received: 30 Oct. 2023

AMS Subject Classification: 33E12; 34A08; 15A16

Key Words and Phrases: fractional differential equations; Caputo derivative; Mittag-Leffler functions; Cayley-Hamilton theorem, the Burgers model, error bounds

Download paper from here.


How to cite this paper?
DOI: 10.12732/ijam.v36i6.8
Source:
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2023
Volume: 36
Issue: 6


References

  1. [1] M. Abdalla, Special matrix functions: characteristics, achievements and future directions, Linear and Multilinear Algebra, 68, No 1 (2018), 1–28.
  2. [2] J. Alidousti, Stability region of fractional differential systems with Prabhakar derivative, J. Appl. Math. Comput., 62 (2020), 135–155.
  3. [3] R. Bagley, R.A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dynam., 14 (1991), 304-311. (2014), 552–578; doi: 10.2478/s13540-014-0185-1.
  4. [4] V. Daftardar-Gejji, A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511–522.
  5. [5] S.A. Deif, E. Capelas De Oliveira, A system of Cauchy fractional differential equations and new properties of Mittag-Leffler functions with matrix argument, J. Comput. Appl. Math., 406 (2022), 1-17.
  6. [6] J. Duan, C. Temuer, L. Sun, Solution for system of linear fractional differential equations with constant coefficients, J. of Math. (PRC), 29, No 5 (2009), 599-603.
  7. [7] A. Erdelyi et al., Eds., Higher Transcendental Functions, 1–3, McGraw-Hill, New York, 1953–1955.
  8. [8] R. Garra, R. Garrappa, The Prabhakar or three-parameter Mittag-Leffler function: Theory and application, Commun. Nonlinear Sci. Num. Simulat., 56 (2018), 314–329.
  9. [9] R. Garrappa, E. Kaslik, Stability of fractional-order systems with Prabhakar derivatives, Nonlinear Dynam., 102 (2020), 567–578.
  10. [10] R. Garrappa, M. Popolizio, Computing the matrix Mittag-Leffler function with applications to fractional calculus, J. Sci. Comput., 77 (2018), 129–153.
  11. [11] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, and F. Mainardi, A practical guide to Prabhakar fractional calculus, Fract. Calc. Appl. Anal., 23 (2020) 9-54; https://doi.org/10.1515/fca-2020-0002.
  12. [12] G. Golub, C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996.
  13. [13] K. Gross, D. Richards, Special functions of matrix argument, I: Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc., 301, No 2 (1987), 781-811.
  14. [14] L. Jodar, J. Cortes, On the hypergeometric matrix function, J. Comput. Appl. Math., 99 (1998), 205-217.
  15. [15] L. Jodar, J. Cortes, Some properties of Gamma and Beta matrix functions, Appl. Math. Letters, 11, No 1 (1998), 89-93.
  16. [16] M. Khan and A. Shakeel, On some properties of fractional calculus operators associated with generalized Mittag-Leffler function, Thai J. Math., 11, No 3 (2013), 645-654.
  17. [17] K. Kilbas, M. Saigo, S. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transform Spec. Funct., 15 (2004), 31–49.
  18. [18] A. Kilbas, A. Koroleva, S. Rogosin, Multiparametric Mittag-Leffler functions and their extension, a survey paper, Fract Calc. Appl. Anal., 16, No 2 (2013), 378-404; https://doi.org/10.2478/s13540-013-0024-9.
  19. [19] V. Kiryakova, Multi-index Mittag Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal., 2, No 4 (1999), 445-462.
  20. [20] V. Kiryakova, J. Paneva-Konovska, Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type, Intern. J. Appl. Math., 35, No 5 (2022), 743-766; DOI:10.12732/ijam.v35i5.8.
  21. [21] M. Kuroda, Formulation of a state equation including fractional-order state vectors. J. Comput. Nonlinear Dyn., 3 (2008), 021202-1-8.
  22. [22] Z. Lin, H. Wang, Modeling and application of fractional-order economic growth model with time delay, 5, No 74 (2021), 1-18.
  23. [23] A. Malkin, A. Isayev, Rheology Concept, Methods, and Applications, ed., Chem. Tec. Publ., Toronto, 2017, Ch. 2.
  24. [24] G.M. Mittag-Leffler, Sur la nouvelle function E_{\alpha} (x), C.R. Acad. Sci. Paris, 137 (1903), 554-558.
  25. [25] J. Paneva-Konovska, Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus, Compt. Rend. de l’Acad. Bulgare des Sci., 64, No 8 (2011), 1089–1098.
  26. [26] J. Paneva-Konovska, From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence, World Scientific Publ., London, 2016.
  27. [27] J. Paneva-Konovska, V. Kiryakova, On the multi-index Mittag-Leffler functions and their Mellin transforms, Intern. J. Appl. Math., 33, No 4 (2020), 549-571; DOI:10.12732/ijam.v33i4.1.
  28. [28] J. Paneva-Konovska, S.A. Deif, On some relations in the class of multi-index Mittag-Leffler functions, Integral Transforms Spec. Funct., 34, No 12 (2023), 965-982.
  29. [29] M. Popolizio, On the matrix Mittag–Leffler function: Theoretical properties and numerical computation, Mathematics, 7 (2019), 1140.
  30. [30] T.R. Prabhakar, A singular integral equation with generalized Mittag-Leffler function in the kernel, Yokohamma Math. J., 19 (1971), 7-15.
  31. [31] T. Salim and A. Faraj, A generalization of integral operator associated with fractional calculus Mittag-Leffler function, Frac. Calc. Appl. Anal., 3, No 5 (2012), 1–13.
  32. [32] R. Saxena, S. Kalla, R. Saxena, Multivariate analogue of generalized Mittag-Leffler function, Integral Transforms Spec. Funct., 22 (2011), 533-548.
  33. [33] A.K. Shukla, J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797-811.
  34. [34] H.M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
  35. [35] J. Tirao, The matrix-valued hypergeometric equation, Proc. Nation. Academy Sci. of USA, 100, No 14 (2003), 8138-8141.
  36. [36] A. Wiman A. Uber den Fundamentalsatz in der Teorie der Funktionen E_{\alpha} (x), Acta Mathematica, 29, No 1 (1905), 191–201.