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Abstract

The process of anomalous filtration of a homogeneous liquid in a porous
medium is modeled by differential equations with a fractional derivative. Frac-
tional derivatives are used as defined by Caputo. The problem of filtration
in a finite homogeneous reservoir is posed and numerically solved. The in-
fluence of process abnormality on filtration characteristics was estimated. It
is shown that a decrease in the exponent of the derivative in the relaxation
term with respect to pressure leads to the decrease of the pressure distribution
up to a certain distance from the beginning of the medium, and then to an
increase. Reducing the order of the derivative in the relaxation term with
respect to the filtration velocity acts inversely. The corresponding dynamics
with decreasing orders of derivatives las the filtration velocity. As a special
case, the case with the predominance of the filtration velocity relaxation time
over the pressure relaxation time is singled out, in particular, when the latter
is equal to zero. In this case, the solution of the filtration equation acquires a
wave character. With an increase in the difference between relaxation times in
terms of filtration velocity and pressure, the propagation velocity of pressure
waves decreases.
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1. Introduction

Mathematical modeling of the dynamics of geofiltration processes in com-
plex conditions of their flow is one of the topical areas of geomathematics,
geoinformatics, geomechanics, which develops mainly within the framework
of classical problem formulations based on generally accepted methods and
approaches of the continuum theory [13, 24]. At the same time, most of the
known mathematical models of the processes of motion of media in geoporous
media are based on classical balance laws, which are inadequate under condi-
tions of a significant deviation of the system from the equilibrium state [12,
18, 27]. In addition, classical filtration models postulate such a very strict re-
striction on processes as an infinite perturbation propagation velocity, which
contradicts real physical concepts.

Attempts to theoretically take into account the effects of nonequilibrium
(in particular, memory effects) in nonstationary filtration in a porous medium
led to the creation of the theory of relaxation filtration, the first most complete
exposition of which, apparently, is contained in the well-known work [18].

An effective modern approach to describing transport processes in systems
for which it is important to take into account nonlocal space-time properties is
associated with the use of non-integer-order integro-differentiation apparatus
[4,5,9,10,19,26]. So, for example, in [4], mathematical models were developed
and solutions were obtained for some filtration boundary value problems on
modeling the fractional-differential dynamics of relaxation filtration processes
in porous and fractured-porous massifs of finite thickness, and in [5] the prob-
lem of modeling fractional differential dynamics of the relaxation filtration
process in the presence of nonlocal boundary conditions. We also note the
work [6] on mathematical modeling of the fractional differential dynamics of
relaxation processes of convective diffusion of soluble substances in under-
ground seepage flows.

The use of the classical theory of filtration of homogeneous liquids in an
elastic regime based on Darcy s law sometimes leads to a discrepancy with
real data in an elastic regime [1, 18]. Inconsistencies are observed especially
in strong non-stationary filtration modes, in the filtration of high-viscosity
oil, oil and gas in loamy low-permeability rocks, etc. Under these conditions,
the equilibrium character of Darcy/s law is usually violated [1,20,25]. In these
works, relaxation phenomena are taken into account in the Darcy/s law during
filtration in porous media. Based on these studies, the influence of relaxation
parameters on filtration characteristics, such as filtration velocity, pressure,
etc, was established.

Many natural porous media have a fractal structure, the modeling of fil-
tration processes in which requires the use of new approaches, methodologies
and methods of analysis that differ significantly from traditional ones. As ap-
plied to the oil and gas industry, this means that the classical methods of field
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development based on the theory of fluid flow through homogeneous porous
media are insufficient in this case [1, 18].

The relaxation theory of fluid filtration as a non-classical anomalous filtra-
tion was developed in [2,18]. In relaxation models of filtration, the apparatus
of fractional derivatives was used in [9, 27].

In this work, in contrast to [7], we consider a generalized relaxation frac-
tional differential model, which simultaneously takes into account relaxation
phenomena both in the filtration velocity and in the pressure gradient. On
the basis of such a generalized model, filtration equations are derived. The
filtration problem for this equation is posed and numerically solved. The influ-
ence of the orders of fractional derivatives on the distribution of pressure and
filtration velocity in the medium at different moments of time is estimated.

2. Statement of the problem

The filtration model with double relaxation in the one-dimensional case

has the form ([2])
ov k ([ Op %p
v+ Ap—=—|=—4+A ) 1
* Yot ,u<8m+ P oot (1)
Auv,Ap - relaxation times of filtration velocity, v and pressure p, k-medium
permeability, p-liquid viscosity.
The continuity equation is written as

oot =0, (2)

where §* is the coefficient of reservoir elasticity.
Equation (1) is written here in a generalized form

ko
A\ DPy= -2 A\, Dp) 3
v+ tV u@x(p+ »Di'p) (3)

where Df , D¢ are Caputo fractional derivative operators [9] .
Differentiating equation (3) with respect to the coordinate x, we obtain
ov 0 5 k 0?

or TPt = e

Taking from equation (2) the derivative of order  with respect to time,
we obtain
ov

P+ ApDi'p). (4)

Dﬁ(9 + 3D p =, (5)
and using equation (5), we write equation (4) in the following form
Op B+1 0%p 9%p
8+>\D —ma2+>\Dt 92 (6)

where k = W is the coefficient of piezoconductivity, 0 < a <1,0< 5 < 1.
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For « =1, f =1 from (6) we obtain the relaxation filtration equation [2,
18]
Op 9?p 0?p Pp
— F+M=5 = — — .
ot T Mo ="\ 0a2 T gioa? @
The initial and boundary conditions for filtration in the finite medium
[0, L] are taken in the following form

p(O,l‘) =0, (8)

p(t,0) = po, po = const, p(t,L) = 0. 9)
For (6), for 8 > 0 the initial condition (8) is not enough. We need to add one
more condition, for example, for
op(0, )
ot
Equation (6) is solved under conditions (8), (9), (10).

= 0. (10)

3. Numerical solution of the problem.

For the numerical solution of the problem (6), (8), (9), (10) we use the
method of finite differences. In the domain, Q = {0 < z < L,0 <t < T}
we introduce a uniform grid wp, = {(zi,t;),x; = ih,i = 0,N,h = L/N,t; =
j7,5 =0, M,7 =T/MY}, where h is the grid step in coordinate x,7 is the grid
step in time [8]. We denote the grid function at a point (x;,¢;) by pf

The finite difference approximation of equation (6) has the form

: : = _
pg—i-l o pg+1 N )\UTQ_ﬁ J pfﬂ _ 2]9? _ pf 1
T INGENG)) — 72
At P 28 opy P =2p] 0]
m(((J—kJrl) —(k=1)"")+ = )
1 G+, gl o
Pyl — 20+l AT
=K ( i+1 };2 i—1 F(2p_ a)hQ (Sl — 255 + S3)> , (11)
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S = F(Q_a)z e (A R R VRS
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r'2-a) T



GENERALIZED RELAXATION ... 123

T Pi—1 —Pi 1-« 1-«
Sy = k —k+1 k
T T2-a) — - ((G—k+1) (j—k)1')
PR Ay
r'2-a) T ’

where I'(-) is the Gamma function.

When approximating the fractional derivatives in (11), the methodology
of [11,13-17,21-23,28,29] was used.

With a known pressure field, from (3) it is possible to determine the field
of filtration velocity. Since the elastic filtration regime is considered, i.e. the
compressibility of the porous medium and liquid is taken into account, it is
natural to expect a non-uniform distribution of the filtration velocity field in
time. Relaxation phenomena, as shown above, have a significant effect on the
pressure field. Accordingly, the filtration velocity field changes depending on
the relaxation properties of the filtration law.

With known p(t,z) the filtration velocity is determined from (3), after
discretization, it takes the form

j—1
Su = 3 (0 = o) (G — k1)1 = (= k)

. Ay . .
o+ s (Sat (T - o)

©TTE By

koo ,
= —E(pfill =PI+ Ap(S1 = S)). (12)
The filtration velocity on the upper time layer from (12) is defined as
. I'(2-— 5)7-6 ko .
+1 +1 +1
K ey e W W

T2 - B)r’ ( A AoSi ) 13)

CR-B)rP+ ) \T2=-B)mF  T(2-p)r?

Some results of calculations according to (13) with the same initial param-
eters used in determining the pressure field are given below.

4. Results and discussion

Some results of numerical calculations according to (11) are shown in Figs.
1-18. The following values of the initial parameters were used in the calcu-
lations: k = 1073m?2; u = 107%*Pa - s; pg = 5 - 10°Pa; B* = 3-108Pa~;
L = 40m.

Figure 1a shows the pressure profiles for different values of 5 when a = 0.7.
As the order of the derivative 8 decreases from 1, a relatively slow propagation
of the pressure profile is observed. Moreover, such a slowdown is noted starting



124 B. Khuzhayorov, T.O. Djiyanov, M.S. Zokirov

from a certain distance from the beginning of the medium (from the entrance to
the medium where pressure pg is applied). For small x values for reduced values
B (from 1), slightly overestimated pressure values are obtained. Consequently,
when the order of the derivative 3 decreases, the pressure distribution changes
from overestimated to underestimated. We also analyzed the case of a decrease
in the order of the derivative a from 1 for a fixed value of (Fig. 1b). In this
case, the reverse dynamics of change occurs compared to the decrease of 5 at
a fixed value of a. Up to a certain point x,the pressure takes on lower values
when « decreases, and then higher values are obtained. Here, too, there is a
change in the mode of pressure change, only from low to high. Comparing Fig.
la with Fig. 1b, one can see that such a regime change occurs at a relatively
large x with decrease in « than with a decrease in /5.So0 in the first case (Fig.
la) if the mode change occurs at = ~ 5 — 6m , then in the second case (Fig.
1b) it occurs at x ~ 10m.

] 10 20 30 40 0 10 20 o 40

Fig 1. Pressure profiles at various 3, a and ¢ = 3600s, A\, = 1000s, A, =
500s, a) o = 0.7, b) B = 0.7.

The pressure field was also studied for various values of the relaxation
parameters )\, and ), for given values of the orders of the derivatives o and
(. Figure 2a shows the pressure profiles for various A,. As it can be seen from
the graphs, an increase in the relaxation time with respect to the filtration
velocity leads, starting from some x to a slowdown in the development of
pressure profiles. In this respect, the action A, is completely analogous to the
action of the order of the derivative §. Only this effect is observed with a
decrease 8 from 1 and here with an increase in A\,. The change in the mode
of change p occurs approximately at the same z (compare Fig. la and Fig.
2a). Pressure profiles at various A, and fixed values of other parameters are
shown in Fig. 2b. The same changes occur in the pressure profiles as the order
of the derivative o from 1 decreases. In this case, the change in the mode of
pressure change has the same character as when the values of 8 decrease from
1. With an increase A\, a more progressive pressure distribution is observed.
The case A\, = 0 with )\, # 0 significantly differs from the cases A, # 0, A, # 0
(Fig. 2b). At X\, = 0 equation (7) transforms into a wave equation with
resistance. Naturally, in this case, the nature of the solution will change
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greatly, the solution, acquiring a wave character, has a finite propagation
velocity in the region. The propagation speed of the leading edge of the

solution for the case « = 1, 8 = 1 is determined by the value , /%. In Fig. 2b,

this case corresponds to a solid line, which has a finite propagation velocity,
when ¢t = 3600s the leading edge of the wave reaches - 22m, i.e. the pressure
front does not reach the end of the medium. Of course, at o # 1,5 # 1 the
nature of the propagation of the pressure wave, in particular, its speed, will
change.

P10~ Pa

b)

a) 205

A=0s N oo A,=500s

A =500 R A =1000s
R P

A =1000's 3 AN A =2000's
5 3

2,=2000s

L L . L e 1 2 T 4o
o 10 20 30 40 o ° 0 o v

Fig 2. Pressure profiles ¢t = 3600s,« = 0.7, 3 = 0.7 and various Ay, A, a)
Ap = 500s b) A, = 500s.

In order to indicate the development of pressure profiles over time, calcu-
lations were carried out for given parameters of the problem for various values
of time. Some of the results are shown in Figure 3. Obviously, within the
framework of the task set, with increasing time t the pressure field will de-
velop, taking on ever greater values. For long times, when all relaxation and
non-stationary transient processes are completed, a stationary linear pressure
distribution is established.

p 107, Pa
P

— =900
,,,,,, t=1800 s

t=3600 s

0 10 20 30 40

Fig 3. Pressure profile at A, = 1000s,\, = 500s,a = 0.7, = 0.7 at
different times.

We also analyzed the case of a decrease in the order of the derivative «
from 1 for a fixed value of § and A\, = 0 (Fig. 4a). It is clear that in this
case there are only relaxation effects in pressure. In contrast to Fig. 1b, a
more progressive distribution of pressure profiles is obtained here. This is
due to the fact that here A\, = 0. As shown above, as A\, = 0 increases
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the velocity of propagation of pressure waves (or pressure profiles) decreases.
Therefore, the case A, = 0 corresponds to the least influence of the inhibitory
effect \,. In this case, a decrease o from 1 acts as a favorable factor for
the propagation of pressure profiles. Similarly, the results on the action of
filtration velocity relaxation alone in the absence of pressure relaxation are
shown in Fig. 4b. Here, the final velocity of propagation of pressure waves is
clearly traced. With decreasing 3 the speed of wave propagation decreases. In
this case, up to certain x, the pressure is lower at relatively large 5, and then
lower. Therefore, a decrease in 8 from 1 leads to a slowdown in the propagation
velocity of pressure waves. With a decrease in 8 from 1, the mode change from
larger to smaller relative to the result § = 1 occurs at smaller = (Fig. 4b).
The calculations performed for other combinations of values of the relaxation
times A, and ), show a similar effect of the change in o and 3 on the filtration
characteristics.

P10~k 7;
5 107, Pa

b)

0 10 20 30 20 0 10 20 30 4o

Fig 4. Pressure profiles at various «, 8 and t = 3600s a) A\, = 0s,\, =
1000s,8 =1 b) A, = 1000s, A, = 0s,ac =1

Calculations for the equal values A, and A, with decreasing values of a and
B from 1 show (Figs. 5a, 5b) that the influence of the parameters is similar
to the previous cases. However, they do not change profiles as much as in the
Ap # Ay. The case o =1 (Fig.ba) and § =1 (Fig. 5b) give the same results
as the classical case, i.e. the case of the absence of relaxation effects. The
profiles shown by the solid line in Figs. 5a and 5b coincide with the results
of \, = Ay =0,a0 = § = 1. This suggests that when the relaxation times are
equal and the orders of the derivatives o and 3 are equal, relaxation effects
do not appear. However, if A, = A\, and o # 3, then due to different values

of derivatives Df Jrlp and Df* (%) relaxation effects appear. In this case,

the predominant influence is naturally exerted by that term from Df Jrlp and
D¢ (g—i’;), which has large values.
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p107°, Pa
5

Fig 5. Pressure profiles at various «, 8 and ¢ = 3600s, A, = 500s, A, = 500s
a) B=1b) a=1.

Figs. 6a, 6b show the distribution of the filtration velocity is shown when
decreasing  from 1 and « from 1, respectively. Comparison of Figs. 6a, 6b
with Figs. la,1b shows that the nature of the change in the filtration velocity
is the same as the pressure field. In this case, a decrease in the values of 5 and
« acts on the filtration velocity field in the same way as when the pressure field
acts on the field. The filtration velocity decreases as x increases. This nature
of the change in the filtration velocity is explained by the elastic regime, which
is the basis for the derivation of equation (6). The pressure py applied to x = 0,
creating fluid motion in the medium, leads to a pressure distribution, the values
of which are much greater at small z, than at large . This occurs due to the
non-stationarity of the process and the compressibility of the porous medium
and liquid. Of course, this distribution is significantly affected by relaxation
phenomena. At large ¢, when all relaxation and non-stationary phenomena
are completed, a linear pressure distribution and a constant filtration velocity
will be obtained.

v 10% mis

(] 10 20 30 40

Fig 6. Profiles of filtration velocity at various £, « and t = 3600s, A, =
1000s, A, = 500s, a) a = 0.7, b) B =0.7.

The effect of relaxation times A\, and A, on the distribution of the filtration
velocity field is shown in Figs. 7a,7b. Comparison of these data with Figs.
2a,2b shows that a similar distribution is obtained for the filtration velocity,
as for the pressure field. As for pressure, the manifestation of a finite pertur-
bation propagation velocity (pressure and filtration velocity) is explained by
the compressibility of the porous medium and liquid, as well as the relaxation
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properties of the filtration law. As in the case of a change in pressure, an
increase A, in general leads to a decrease, and an increase \,, in general, to
an increase (for large x) in the filtration velocity.

b)

2 =0
N

v 10%, mis

V10% s
S

=500
2,=10005

A=20005

0 10 20 30 40

Fig 7. Profiles of filtration velocity at ¢ = 3600s,a = 0.7,8 = 0.7 and
various Ay, Ap, a) A, = 500s b) A, = 500s.

The development of filtration velocity profiles over time is shown in Fig.
8. Comparison with Fig. 3 shows that the filtration velocity decreases with
increasing time for small x, and increases for large ones z. Such a non-
monotonous dynamics of the development of profiles is explained by the for-
mation of various pressure gradients and the relaxation properties of the fil-
tration law. From Fig. 3 it can be seen that at small ¢ in the initial parts of
the medium (small x) large pressure gradients are formed, which correspond
to large v. As time increases, this gradient decreases, resulting in a decrease
in v. Of course, the development of profiles v is determined not only by the
pressure gradient, but also by other filtration parameters, since the filtration
law is non-equilibrium.

V10, s

=900 s

1=1800 s

=3600's

] 10 20 30 a0

Fig 8. Profiles of filtration velocity at A, = 1000s, A, = 500s, = 0.7, 8 =
0.7 at various points of time.

A separate effect of relaxation phenomena in pressure and filtration veloc-
ity on the distribution of filtration velocity is shown in Figs. 9a,9b. In the
absence of relaxation in filtration velocity, a decrease « from 1 leads to an
increase v (Fig. 9a). In the absence of relaxation in pressure (Fig.9b), with a
decrease (8 from 1 the propagation zone v decreases. Considering that in this
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case we have a wave solution, this means a decrease in the propagation veloc-
ity of the perturbation in the medium, both pressure and filtration velocity.
At the same time, with a decrease 8 from 1 in the initial parts of the medium
(small z), the filtration velocity takes large values, and then (relatively large
x)- smaller values. This distribution v is fully consistent with the distribution
p (Fig. 4b).

V10, ms V10, mis

0 10 20 30 40 o o 20 30 “0

Fig 9. Profiles of filtration velocity at various «, 8 and t = 3600s a)
Ay = 0s, A\, =1000s,3 =1 b) A\, = 1000s, A\, = 0s, = 1.

The results for the case of equal relaxation parameters A, = A, are shown
in Figs. 10a,10b. The nature of the change in the filtration velocity with a
change in o and (3 is quite similar to the change in the pressure field (Figs.
5a,bb). With a decrease o from 1, the filtration velocity increases (Fig. 10a).
A decrease 8 from 1 leads to a complex change dynamics of v. At the same
time, up to certain x values x becomes larger, then smaller. As noted above
in the analysis of Figs. 5a,5b, the solid lines in Figs. 10a,10b correspond to
the solution of the classical piezoconductivity equation derived from the linear
equilibrium Darcy's law. Therefore, in the cases of Ap =Xy =500, =1,8=1
and A\, = A\, = 0 for arbitrary «, 8 are identical.

v 10 mis N v 10%, mis

Fig 10. Profiles of filtration velocity at various «, 8 and t = 3600s, \, =
500s,\, =500s a) f=1Db) a=1.

Conclusions. The paper considers the problem of anomalous non-stationary
filtration of a homogeneous liquid in a homogeneous porous medium on the
basis of a relaxation fractional-differential filtration law that takes into ac-
count relaxation phenomena both in pressure and in filtration velocity. Using
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this law, the piezoconductivity equation is derived, for which the problem of
filtration in a finite one-dimensional medium is set. The problem is solved
numerically with the approximation of fractional derivatives in the piezocon-
ductivity equation based on their Caputo definition. On the basis of numerical
calculations, the effect of relaxation times on pressure A, and filtration velocity
Ay, as well as the orders of fractional derivatives in the fractional-differential,
relaxation Darcy,s law, o and 3, on the filtration characteristics was estab-
lished. The fields of pressure and filtration velocity are determined for various
values of the parameters A, A, o and 3. It is shown that a decrease 3 from 1
leads to a slight increase in pressure values on p up to certain values of z, and
then to a decrease. The effect of decreasing « from 1 is the opposite: pressure
up to certain valuesx takes smaller values, and then larger ones. The effect of
an increase A, on the pressure field is similar to the effect of a decrease in .
Accordingly, the effect of an increase A, on the pressure field is similar to the
effect of a decrease in . The following feature of the increase in piezoconduc-
tivity is revealed: at relatively large A\, — A,, in particular at A, > 0, A, = 0,
the solution of the equation acquires a wave character. At, a« = 8 = 1 the
propagation velocity of pressure waves is determined by the quantity \/K/A,.
With the change in «, 8 the nature of the propagation of pressure waves, in
particular, its speed, will change. For example, as values of § the nature of
the propagation of pressure waves, in particular, its speed, will change. For
example, as values of Eq.(4a) with, o« = § = 1 and A\, = A, classical solu-
tion of the equation is obtained without taking into account relaxation effects.
However, in (6) at, a # (3 the relaxation effects are preserved even in the case
Ap = Ay. The filtration velocity field as a whole has similar characteristics with
the pressure field. Changes in A,, A,, @ and 3 lead to the same changes in the
filtration velocity field as in the pressure field. However, in the dynamics of
the development of filtration velocity profiles , non-monotonicity up to certain
values of x can be observed. This is due to the change in the pressure gradient
in this zone with increasing time. In general, both for pressure and for the
filtration velocity, non-uniform fields of their distribution are obtained, which
is associated with the effects of elasticity of the porous medium and liquid, as
well as the relaxation nature of the filtration law.
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