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Abstract

By using Slater’s transformation formula, we express the bilateral gener-
alized mock theta functions of third and eighth order as 5¢ series and then
represent them as continued fraction.
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1. Introduction

In his last letter to G.H. Hardy [11], S. Ramanujan listed seventeen mock
theta functions of order three, five and seven. According to Ramanujan, a
mock theta function is a function f(q),|q| < 1, satisfying the following two
conditions:

(0) For every root of unity £, there is a f-function 6¢(q) such that the
difference f(q)— 6¢(q) is bounded as ¢ — & radially.

(1) There is no single #-function which works for all £, i.e., for every 6-
function 6(q) there is some root of unity ¢ for which f(q) — 6(q) is
unbounded as ¢ — £ radially.
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The Third Order Mock Theta Functions of Ramanujan’s are:
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2. Notations

In this paper we have use the following notations:
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For r = s + 1, the above series is convergent for |z| < 1, for r < s, the
above series is convergent for all z and for r > s + 1, the diverges for all z
except z = 0.

3. Bilateral Generalized Mock Theta Functions as 3¢, Series

We shall use the following formula of Slater [7, eq.(5.4.5), p.143] with

d= EZ;’ to express the generalized bilateral function as 9¢ series:
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e Bilateral Generalized Third Order Mock Theta Functions as
2¢1 Series

Using (3.1), we now express the seven bilateral generalized third

order mock theta functions as a limiting case of a 9¢; series:

ock ¢
(i) LI s 10,08, :9)

_g (q’ _Zq/B/q a—q4/zq6,q)oo ©© qn2—2n+n[3’an
2 (=2 -4/%4/0de = (@G n(@0)n

2 ,—azﬁ 4’_ 5/az 6; 0 n?4+nB . —n
(¢, —axd’/dt —d°/axd”q) Z gt (32)

az (-az/q,—¢*/az,a/¢:q) 8 = (@:0)n (6* /3 q),,
_ 2.8
(al,ag — 00,b] = —2,by = az,z = O;Z q in (3.1)> .
q graiaz

(i) WLt/ 5 0,0, 8,2:0)

/o
ig?? (q.i2¢° /! PP, —ia 24T 24P q)
al/2, (ia1/2z/q1/2,—z’q3/2/a1/2z —Liq)__

n n—i—nﬁ
oy GO
an

n=0
i>? (q, —izqﬁ/a1/2q5/2, ial/zq?/z/zqﬁ; q).
a2z (—ia22/q 2, ig? 2 [a 22, —1;q) _
i (—1)ngm s
X n 2. 42
am (g% 4%),,

n=0

_|_



98 S. Tiwari, S. Saba

ial/?z ial/?z zzqﬁ .
(al,ag — 00,b1 = q177b2 = —W,Z = q2a1a2 mn (31) .
1—0z2/¢2)(—¢P Ja,—aq/qP;
(i) ¢ /q(g??(/ai?{q?)mq/q Ve (0,0, 8, 230)

g (20", —a' P 24P ) N gt
041/2 (041/227 q/al/z”Z’ _1; q)oo n=0 a (q2; q2)n
¢ (0,207 /a12q,a 22 [2qPsq) X gritmind

— X ——— (3.4)
al/2 (—all?z,—qfal?2,~1q) . o (g% 67),
2.8
<a1,a2 — 00,by = a/?2,by = —a/?z, 2 = 4 i (3.1)> .
ai1ag
. 1+a?22/¢*)(¢° /a*q,0®q* /a°;q
o) BN
B _,L'q3/2 (q izqﬁ/aq?) zaq5/2/zq5 oo Z n q" 24+np
12 _; . 3/2 _ 2
oz (zaz/q/ iq3/2 ) az, 1q nooz”
i3/ ( —zzqﬁ/aq zaq5/2/zq5 " 24nB
s (Ciaz/q' 2, g2 ] az, —1; ) Z a2n &) (3.5)
2, iq )
. . 2 B
daz , daz 25q0
<a1,a2 — 00,b1 = W,bz = —ql/z,z = P in (3.1)> .
(a®/a®.a° /a%:a%)
(v) W25, = .0, e, 5, 2, q)
2(.2 2 B/ 4 6.2 8. 2
_ 2270 d P )
(% — 0222) (22]q, q/ 2%, %] % ¢%)
e q2n2—3n+nﬁa2n
X
— (¢*:¢%),, (0% %),
N 22q? (q a?22¢% 140, % ) o?2% P ¢?)
a? (¢° — a222) (a2z2/q,q3/a2z2 a2/q2' @)

2n +n+n6a

XZ D) 4/a2;q - (3.6)

(Letting ¢ — ¢% and then aj,as — 00,b; = 22q,by = £
O in (3.1))

gqraiaz



REPRESENTATION OF GENERALIZED MOCK THETA ... 99

. B 1q*v3,—g*v® /P
(VI) ( q(q/qu —q/qv2 7;;00[1)00)( (O,ﬁ,ZJI)

q (¢.—24" |30, —q*? /24P q) X gt mtnBy =2
vz (vz,q/v2,=1/v; @)oo = (G On(—vq;@)n

q (0.2¢° /v, q*v/2q% q) N g inBy—in
vz (0?2, —q/v*2,—v10) o = (@ )n(—a/v3O)n

(3.7)

2

2 ZQQ’B
<a1,a2 — 00,bp =vz,bp = —v 2,2 = in (3.1)> .
q-aiaz

B1s3 45 /,8.,2
(vil) (I (0.8, 220)

2 (4228 o2t 020 )220 P
v2g3 (1 —v222/g3) (v22?/q, q/v?22,v% ¢2)

00 2n2—n+n,3z2nv—4n
. = (%), (®/vh¢%),
. 22 (4%, 22¢° Jv2q*, v2q8 /2 qﬁ )OO
v2g3 (1 =222 /q3) (v=222 /q, q/v 222 v %)

& 2n2—n+nﬁ 2n,.4n
x> A U (3.8)

= (0%d%), (Pvh¢?),

(Izegting q — ¢% and then aq,as — 00,b; = v22%q, by = v 222%¢, 2 =
=4 in (3.1)).

qa1a2

e Bilateral Generalized Eighth Order Mock Theta Functions as
21 Series

Using (3.1), we now express the eight bilateral generalized eighth
order mock theta functions as a limiting case of a 9¢7 series.
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4. Continued Fraction Representation for the Bilateral Generalized
Third Order Mock Theta Functions

We now represent the bilateral generalized third order mock theta func-
tions as continued fraction.

From equation (3.3) we have
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and from equation (3.4) we have
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Here we have used [9, eq.(3.74), p.79].
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5. Continued Fraction Representation for Bilateral Generalized
Eighth Order Mock Theta Functions

We now represent the bilateral generalized eighth order mock theta func-
tions as continued fractions.

(i) From equation (3.9) we have continued fraction for Sp. (0, @, ¢%;q) as
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Here we have used [9, eq.(3.79), p.82].
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where Sp.(q) is the bilateral Gordon and MclIntosh eighth order mock theta
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(ii) From equation (3.10) we have

2
0o q2'n
S1,6(0,0,¢%q) Sy 4T > n=0 (4:0)2n
0o q2n2+2n - 2 2 q2n2+2n ’
) g¢@rten g¢r e
n=0 (¢%9),, n=0 (¢2;q),,
where
2
. (1 4 q2a—1) (q2, — g/ q2)oo (_q2a+1; q2)oo
2 = )
(1-q) (—a?*,1/4,¢% %) o
_ 2
. _q3 (1 + g2 2) (q2, _qza/qz;q2)oo (_q4/q2a;q2)oo
g (—a3/a**,1/q,¢% ¢%) o ’

*—q ¢ —q }

1+g+14+qg+......

Sl,c (07 «, qav q)
q2n2+2n

ZOO
n=0 (¢2;9),,

=S+ (1 —q)Th [1—1-
Here we have used [9, eq.(3.79), p.82].

Special cases. For a =1

SI,C((])

2
q2n —+2n

ZOO
n=0 (¢?%9),,

2 4

a —9q 4 —4q

=S +1—-q)Tr |1+ ,

2+ q“[ TFgtl+qgt...... ]

where S .(q) is the bilateral Gordon and MclIntosh eighth order mock theta
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where
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n=0 (¢%;q)4,

2

4
?-q ¢ —g¢
=83+ (1—-q)T5 |1+ ,
3+ Q)?’[ T4qtltqgt...... ]

where Tp .(¢) is the bilateral Gordon and MclIntosh eighth order mock theta
function.

(iv) From equation (3.12) we have

2n2

o0 q
T1c(0,0,q9%q) —T,+S 2 n=0 (4;9)2n
[o%) q2n2+2n - 4 4 [o%) q2n2+2n ’
=0 (4%9)9y, 2 n=o0 (4%:9)a,
where
_ 2
g _ a0+ (@ -/ ), ()
4 = = )
?* (1 +¢%1) (—q*1,1/q,¢% %) o
2
7, = ¢ 0+a/e) (@*, —a*/¢* @) o (= )d* %)
¢**(1—q) (—a%/**,1/4,¢%: %) o ’
T1..(0,c, q%; 2 _ 4_
e ( a q):T4+(1_q)54 T e B _
S0 g2 tn 1+qg+14+qg+......
n=0 (¢%;q)a,

Here we have used [9, eq.(3.79), p.82].

Special cases. For a =1

Tl,C(‘])

2
q2'n +2n

ZOO
n=0 (¢2%9),,

2

4
P?-q  d'—q
= Ty+(1—q)Sy |1+ :
1+ q)4[ T4gtltqgt...... ]

where T .(q) is the bilateral Gordon and MclIntosh eighth order mock theta
function.
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(v) From equation (3.13) we have

2.
_ 00 q2n +3n—na
Vo (0,0, 5 q) S AT > =0 (%00, (54,

00 q2n2+5n7na %) q2n2+5n7na ’
Z”ZO (4%:62),,(—3%42),, Z”=0 (¢%4%),(—4%42),
Where 2 2 2 4 7.2 2
g @ (14+¢*2) (% -/, -/, —4* > %)
5 pr—
@ (1+¢*3)  (*)P, -1/q,—*/q%:¢%) s
¢ ()P )P a0 )
T5 = ——5 2/ e
q (—%/q%, —4;4%)

—1.
Vo (0,a,4% 5 q)

ZOO q2n2+5ninu
n=0 (¢2;4?),,(=¢%4%),,

q+q5—a q+q7—a
l—qg+ 1—q+......

=S5+ (1+ )15 [1+

Here we have used [9, eq.(3.79), p.82].

Special cases. For a =0
V0,c(0,0,1/g;9)

ZOO q2n2+5n
n=0 (¢%;¢?),,(=¢%4?),,

5 7
+ +
:Ss+(1+q)T5|:1+q ¢__ 49749 }

l—qg+1—q+......

(vi) From equation (3.14) we have

2n2 +n—na

Vie (0,04 15 q) 2 =0 (%%, (449,

=S¢ + T§

where
S = q (¢* —a*/d*, —¢**, —q2/q2“;q2)oo’
(I+¢*3) (1 -¢*?)  (¢*/a.—1/q,—1/q%¢*)
7~ C0+a (¢*.a°/a* a" /0" &/ ** 1 4°) o

G (1—q)  (—¢;¢2)% (—¢3/q%:¢%)..
Vl,c (07 «, qa_l; q)

ZOO q2n2+3n—na
n=0 (¢%:¢?),,(-¢%4?),,

q+q q+q
l—g+ 1—q+......
Here we have used [9, eq.(3.79), p.82].

3—a 5—a

=S+ (1+¢)7T6 |1+
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Special cases. For a =0

V1,6(0,0,1/q;q)

EOO q2n2 +3n
n=0 (¢2%;4?),,(—¢%4¢%),,

c+q  PHg
1l—qg+1—q+......

=S+ (1+¢)7T6 |1+

(vii) From equations (3.13) and (3.14), we get

q2n2 +3n—na

> oo Ty —
%70 (07 Q, qa; Q) _ S? + T7 n=0 (q4;q4)n
‘/170 (07 o, q%; Q) Ss + 15 ZOO g2n?+n—na

n=0"(¢%¢%),

)

where

S q (% =/ —** )0, - | °*; %)
7 = M
¢ (1+q*72) (¢*/q,—1,-q/%¢%)
¢ (L+ ¢ (2 ¢%/d% a*)a™ )P d%)
Tr = — 2 2/ a 2 )
q (=¢*/q%, =1, —q/%¢*)

(14 ¢t (% —q*/d -t =/ ®)

Sq =
T+ ) A=) (@M -1, -1/ )

¢® (L4 ¢ (¢, ¢%/a% 4" /4% ¢ 1 **; ¢%)

Ty = — ,
i 7> (—a*/q*, -1, -1/t 15 ¢%)

L 1+@+1+¢' +

Voo (0,0,q4%q)  S7+Tx [1 ¢ ¢

Vl,c (07 «, qav q) B SS + T8
Here we have used [9, eq.(3.74), p.79].

Special cases. For a =1

Voelg)  S7+T7 [1 ¢ q* ]

Viel)  Ss+Ts |1 1+@+1+¢ +......
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where V) .(¢) and V} .(q) are bilateral Gordon and McIntosh eighth order mock

theta functions.

Conclusion

Mock theta functions are mysterious functions. In this study we have
given Slater’s transformation formula to express bilateral generalized mock
theta functions of third and eighth order as 5¢; series and also continued
fractions for these bilateral generalized mock theta functions of order third

and eighth.
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