DOI: 10.12732/ijam.v37i3.2
HJORTNAES INTEGRALS INVOLVING
THE DI- AND TRILOGARITHMS
Lubomir Markov
Department of Mathematics and CS
Barry University
11300 N.E. Second Avenue
Miami Shores, FL 33161, USA
Abstract.
At the 1953
Scandinavian Mathematical Congress, M. Hjortnaes presented the following
transformation of $\sum_{k=1}^\infty 1/k^3=\zeta(3)$ to a definite integral:
$\zeta(3) = 10\dint_0^{\log[(1+\sqrt{5})/2]} t^2 \coth t\, dt$. We show that a
similar formula holds for $\zeta(2)$, namely $\zeta(2) =
\frac{10}{3}\int_0^{\log[(1+\sqrt{5})/2]} t \coth t\, dt$, and refer to the
above and related integrals as Hjortnaes integrals. Based on the known exact
values of the first two polylogarithms, we derive corresponding Hjortnaes
integrals and also some series representations.
How
to cite this paper?
DOI: 10.12732/ijam.v37i3.2
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 3
References
[1] M. Munthe Hjortnaes, Overføring av rekken … til et bestemt integral, Tolfte Skandinaviska Matematikerkongressen, Lund, 1953 (1954), 211–213.
[2] L. Lewin, Polylogarithms and Associated Functions, Elsevier, North-Holland, New York/London/Amsterdam, 1981.
[3] L. Markov, A functional expansion and a new set of rapidly convergent series involving Zeta values, Stud. Comput. Intelligence 793 (2019), 267–276.
[4] L. Markov, Two short proofs of the formula … Gazette 106 (2022), 28–31.
[5] H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
o Home
o Contents
o How to?
(c) 2024, Diogenes Co, Ltd.; https://www.diogenes.bg/ijam/