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Abstract

This study presents a symbolic approach for solving second order bound-
ary value problems with Stieltjes boundary conditions (integral, differential,
and generic boundary conditions). The proposed symbolic method computes
the Green’s operator and the Green’s function of the provided boundary value
problem on the level of operators by applying the algebra of integro-differential
operators. The suggested algorithm will aid in implementing manual calcula-
tions in mathematical software programs like Mathematica, Matlab, Singular,
Scilab, Maple and others.
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1. Introduction

Boundary value problems (BVPs) are fundamental in scientific comput-
ing and have numerous applications across various fields. However, current
computer algebra systems lack systematic support for solving them symboli-
cally. Over the past five decades, researchers and engineers have focused on
developing applications for general BVPs of higher-order ordinary differential
equations with general boundary conditions, such as point evaluations. The
symbolic analysis of BVPs, along with the formulation of Green’s operator
and Green’s function for semi non-homogeneous BVPs (non-homogeneous dif-
ferential equations with homogeneous boundary conditions), was pioneered
by Markus Rosenkranz et al. in 2004 [I], also see [2, 26, [8, @, [10, [I1].
In literature, there are several symbolic algorithms available for solving dif-
ferential equations, integro-differential equations, differential-algebraic equa-
tions [20} 211, 22] 23| 24], 18] and references therein.

In this paper, we introduce a symbolic algorithm for fully non-homogeneous
second-order BVPs, which involves non-homogeneous differential equations
with non-homogeneous boundary conditions. Our method is similar to the
symbolic approach used for semi non-homogeneous BVPs in integro-differential
algebras. We present the Green’s operator and Green’s function for fully
non-homogeneous second-order BVPs with general, differential, and integral
boundary conditions separately. Additionally, we extend our results to include
the Green’s operator and Green’s function for BVPs with Stieltjes boundary
conditions, which combine general, differential, and integral boundary condi-
tions.

The structure of this paper is as follows: Section reviews the essential
concepts related to the algebra of integro-differential operators. In Section [2]
the suggested algorithm for BVP is presented with four different boundary
conditions: in Section 2.1 BVP with general boundary conditions; in Sec-
tion 2.2 BVP has differential boundary conditions; in Section [2.3] BVP has
integral boundary conditions; and in Section 2.4 BVP with Stieltjes boundary
conditions. Section [3| demonstrates the algorithm through real-world applica-
tions, and Section 4] concludes with final remarks.

1.1. Algebra of Integro-differential Operators. The BVP, along with
Green’s operator and Green’s function in operator-based notations, is formu-
lated by revisiting the foundational concepts of integro-differential algebras
and the algebra of integro-differential operators. For more details, refer to [12]
or [14] 19, 15l 17, 13]. Throughout this section, we assume that K is a field of
characteristic zero, and F = C*|[a, b] is considered for simplicity.

DErFINITION 1.1.  [I2 I7] An algebraic structure (F,0,€) is termed an
integro-differential algebra over K if F is a commutative K-algebra equipped
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with K-linear operators 0 and €, satisfying the following conditions:
9@ f) =1,
*d(fg) = (9f)g + f(9g),
* (00f)(@0g) +€O(fg) = (€Of)g + f(€Dg).

Here 0 : F — F and @ : F — F are two maps defined by 0 = d%, a derivation,
and @ = ff dz, a K-linear right inverse of 0, i.e. 9o€@ = 1 (the identity map).
The map € is called an integral for 0 and @ 09 =1 — X, where ¥ is called the
evaluation operator of F defined as ¥ : f — f(a), evaluates at initial point a.
An integro-differential algebra over K is called ordinary if Ker(9) = K.

For a standard integro-differential algebra, evaluation can be considered as
a multiplicative linear functional ¥ : F — K, meaning that X(fg) = (Xf)(Zg)
for all f,g € F. Let ® C F* represent the set of all multiplicative linear
functionals, including 3. To define a BVP, we also need to introduce point
evaluations as additional generators. For instance, the boundary conditions
u(0) =5, v/'(2) = -1, fol udr =0 and v/ (1) + f02 udr = —2 on a function u €
F = C*[a, b] correspond to the functionals You = 5, ¥90u = —1, 31Cu =0
and X10u + 290u = —2 in F*.

DEFINITION 1.2.  [12][I7] Let (F,d,€) be an ordinary integro-differential
algebra over K and ® C F*. The integro-differential operators F[0,€] are
defined as the K-algebra generated by the symbols 0 and €, the functions
f € F and the characters (functionals) ., ¢, x € ®, modulo the Noetherian
and confluent rewrite system given in Table

TABLE 1. Rewrite rules for integro-differential operators

fg—f-g |0f = fO+ | efe— (ef)e—e@f)
X6 — ¢ 96 —0 |@fd— f—Cf — (/)%
of = (¢f)p| 90 —1 Cfo— (€f)o

2. Proposed Symbolic Algorithm

For an integro-differential algebra F, a fully non homogeneous second-
order BVP is given by a differential operator L = 0% + a10 + a¢ and the
boundary conditions by, by € F[0, €] with boundary data ¢1,co € R. Given a
forcing function f € F and a set of boundary data c1, co € R, we want to find
u € F such that

Lu = f and bju = c1, bou = c3. (1)
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The quantities {f,c1,c2} are known as the data for the BVP. As mentioned
in [§], the data can be decomposed as

{f, c1, 62} = {f,0,0} + {0, C1, CQ}. (2)

The data {f,0,0} indicates the BVP with semi non-homogeneous equations
and the data {0, c1, c2} indicates the BVP with semi homogeneous equations.
Symbolically, the solution of can be written as

u = G(f7 61762))

where G is a linear operator (known as Green’s operator) that transforms the
data into the solution.

In [12], Rosenkranz et al. presented a symbolic solution of the form
Gun(£,0,...,0) for a BVP with data {f;0,...,0} (semi non-homogeneous
BVP). In this paper we find the solution of fully non-homogeneous BVP of
order two with data {f;c1,ca}. To motivate the solution, we briefly recall the
symbolic solution G, (f,0,0).

Consider a semi non-homogeneous BVP
Lu = f and byu = 0,bou = 0, (3)

where L = 0 + a10 + ag is a surjective linear map and B = {by,by} C F* is
a closed subspace of the dual space. We call G,,;(f,0,0) € F a solution of
for a given forcing function f € F, if LG, (f,0,0) = f and G, (f,0,0) € B—.
In operator notations LGy, = 1 and BG,;, = 0, and the operator G, is
called Green’s operator for the semi non-homogeneous BVP. As mentioned
in [12 7], the Green’s operator and Green’s function can be computed as
Gun = (1 — P)L3! and u = Gy (f) respectively, where P € F[9,€)] is the
projector operator onto Ker(L) along B+, and L;l is the fundamental right
inverse of L that can be computed using the classical method namely various
of parameters.

Now, consider a semi homogeneous BVP
Lu = 0 and bju = c1, bou = ca, (4)

where {c1,c2} C R is set of boundary data. Let H be any function (not
necessarily satisfying the differential operator L) such that byH = ¢; and
boH = co. Set u = H + v, then one can observe that v satisfies the semi
non-homogeneous BVP

Lv= — LH and bjv = 0,bv = 0,

then, the solution u = H + v of (4} is computed similar to the Green function
of semi non-homogeneous BVP ({3)), and it is denoted by G1(0,c1,c2) = H +
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Gnn(—LH). In details,
Gh(0,e1,¢2) = H+ Gun(~LH) = H+ (1 = P)Ly' (—LH)
=H—Lp'LH+PLZ'LH = PH, (- Lp'L=1).

The function H € F is such that byH = ¢; and boH = ¢3. We call H as a
right inverse of B such that bjH = ¢; and boH = co. Since H is depending
only on the boundary data, this amounts to an interpolation problem [3| [l [7]
with the given boundary conditions. The Green’s operator maps each f to
its unique solution G,;(f,0,0). The BVP is called regular if and only if
B is complement of Ker(L) so that F = Ker(L) ® B* as a direct sum. The
regularity of a BVP can be tested algorithmically [12, pg. 31] as follows: If
{u1,u2} is a basis for Ker(L) and {b1,b2} is a basis for B, then the BVP is
regular if and only if the evaluation matriz

_ (b1(ur) bi(u2)
= (b&ub b§<u§>> ?
is regular (non-singular).

Finally, the solution of the given BVP is
G(f7 C1, 02) = Gnh(fa O) 0) + Gh(oa C1, 62) = (1 - P)Lg‘lf + PH? (6)

where P is the projector operator, L;l is the fundamental right inverse and
‘H is the function satisfying the boundary data.

2.1. BVPs with General Boundary Conditions. In this section, we con-
sider a BVP of the following type:

Lu = f and Zay = C1, Eby = C2, (7)

where L = 0% 4+ a10 + ag is differential operator, f € F is a given forcing
function, ¢1, co € R are boundary data, and X, ¥ are evaluation operators at
a and b respectively. We want to find u € F such that the given BVP (7)) is
satisfied.

Let {y1,y2} be fundamental system for L, i.e., y1,y2 € Ker(L), then the
yi(a) (b)> i

y2(a)  y2(b)

regular. As mentioned in [I ], the solution w is computed as u = (1 —

P)L:'(f) + PH, where

T —0b a—x
P: Za 27
(=)= (55)
L}_wlzyQQ Y1 _ Y2

T 7 e T 7
Y1Ys — Y2 Y1Ys — Y241

(e acy — bcy
H_<a—b>x+a—b .

given BVP is regular if and only if the evaluation matrix (
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Now, the solution is

a— y1y2 y2y1 Y1Ys — Y24
a—b) " Ta—b )

After simplification, we have

“@):”(‘””)/a (@, <> 12 (D9, (2)
)

b
a—z Y1 x)f x)
- yg(b)/ dx
(a—b) 1L(@)yz(2) — y2(2)yy (2)
b
a—x y2(z) f ()
+ 1 (b) / dz
(a—b> o Y1(2)ys(x) — ya(z)y ()
c1 — ¢ acy — bey
—i—(a_b)x—l— b (8)
The following example illustrate the solution of a given BVP as in the equa-

tion .

ExaMPLE 2.1. Consider the differential equation Lu = f with boundary
conditions Y,u = c¢1,Spu = co, where L = 92 is a differential operator, f
is the forcing function. For simplicity, we take f(z) = e*, evaluation points
a = 0,b =1, and the boundary data c¢; = 1,c; = 2. Following the proposed
methods, we have

Fundamental system {y1,y2} = {1, 2},
Fundamental right inverse operator L}l =20 — Ox,
Projector operator P = (1 — z)Xg + X,
Boundary data interpolating function H = x + 1.

Now the solution of the given BVP, computed as in equation , is
u(z) =2z + e* — ze.
It is verified that Lu(z) = 0%u(z) = €* and Sou(z) = 1, L1y(z) = 2.

The following section presents the solution of the given BVP with differ-
ential boundary conditions.

2.2. BVPs with Differential Boundary Conditions. In this section, we
consider a BVP of the following type:

Lu = f with ¥,0u = ¢1, Xpu = ¢, or Lau = ¢1, Lpou = co, (9)
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where L = 0% + 410 + ag is differential operator, f € F is a given forcing
function, ¢y, co € R are boundary data, and X,0, X0 are derivative evaluation
operators at a and b respectively. We want to find v € F such that the
given BVP @D is satisfied. Let {y1,y2} be fundamental system for L, i.e.,
y1,y2 € Ker(L). For sake of simplicity, we consider the first set of boundary
conditions i.e., X,0u = c¢1, Xpu = co for the given differential operator L. As
mentioned in [I} [§] and similar to the process in Section the solution u is
computed u = (1 — P)L*(f) + PH, where

P=(x—0)X,0+ Xy,
Y1 Y2
T ;T (e T 7
Y1Ys — Y2y Y1Ys — Y2y
H = c1z + (ca — c1b).

=10

Now, the solution is

u=(1—(x—0)2,0— %) (yQQ,ylf, — y19,y2f,>
Y1Ys — Y241 Y1Ys — Y24

+ ((SU — b)Eaa + Eb) (Cl$ + (CQ — Clb)) . (10)

If we consider the other set of boundary conditions i.e., Y u = c¢1, Xp0u = ¢
for the given differential operator L, then the solution is

u=(1-%, — (x —a)pd) <y29,y1f, - y19,y2f,)
Y1Ys — Y2Y1 Y1Ys — Y2Y1

+(Xo + (z — a)2p0) (c2z + (c1 — c2a)) . (11)

The following example illustrate the solution of a given BVP as in the

equation .

ExaMpPLE 2.2. Consider a boundary value problem Lu = f with bound-
ary conditions ¥,0u = ¢1, Spu = co, where L = 9? is a differential operator,
f is the forcing function. As in Example we take f(z) = e®, evaluation
points a = 0,b = 1, and the boundary data ¢; = 1,co = 2. Following the
proposed methods, we have

Fundamental system {y1,y2} = {1, z},
Fundamental right inverse operator L}l =20 — Ox,
Projector operator P = (x — 1)X0 + X1,
Boundary data interpolating function H = x + 1.

Now the solution of the given BVP, computed as in equation , is
u(z) =2+4¢€" —e.
It is verified that Lu(z) = 0%u(z) = €* and Spdu(x) = 1, Squ(z) = 2.



584 S. Thota, T. Gopisairam

The following section presents the solution of the given BVP with integral
boundary conditions.

2.3. BVPs with Integral Boundary Conditions. In this section, we con-
sider a BVP of the following type.

Lu = f with X,u = ¢1, XpQu = ¢, (12)

where L = 0% + a10 + ag is differential operator, f € F is a given forcing
function, c¢1,co € R are boundary data, and X, is integrate evaluation oper-
ators at b. We want to find u € F such that the given BVP (|12)) is satisfied.
Let {y1,y2} be fundamental system for L, i.e., y1,y2 € Ker(L). As mentioned
in [I B] and similar to the process in Section [2.1f and Section the solution
u is computed as u = (1 — P)L'(f) + PH, where

2x a? — b? 2(x —a)
P= — o — | %O,
(a—b <a—b>2> *((a—b)?) b
-1 Y1 Y2
=yl—F——— —y0———,
E Y1Y5 — Y2y Y1ys — Y2y
2(a—b)er + ¢ (a? — b%)c1 + 2acy

= RO (a—b)?

Now, the solution is

2x a? — b? 2(x —a)
“‘(1‘ (a—b‘ <a—b>2>2”‘<<a—b>2>zb9)
o (yQQ /ylf e ,yzf /)
Y1Ys — Y2, Y1Ys — Y2y

() (G5 )

<2(a —b)ey + e (% —b?)cy + 2a02>

(a—02 " (a—0)?

The following example illustrate the solution of a given BVP as in the

equation .

(13)

ExaMPLE 2.3. Consider a boundary value problem Lu = f with bound-
ary conditions Y,u = c1, XyQu = c9, where L = 02 is a differential operator,
f(z) = €* is the forcing function, evaluation points a = 0,b = 1, and the
boundary data ¢; = 1, co = 2. Following the proposed methods, we have

Fundamental system {y1,y2} = {1, 2},
Fundamental right inverse operator L}l =20 — Cx,
Projector operator P = (1 — 2x)%g + 22340,
Boundary data interpolating function H = 2z + 1.
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Now the solution of the given BVP, computed as in equation , is
u(z) = (6 — 2e)x +€”.
It is verified that Lu(z) = 0%u(z) = €* and Sou(z) = 1, %10u(z) = 2.

The following section presents the solution of the given BVP with Stieltjes
boundary conditions (combination of general, differential and integral condi-
tions).

2.4. BVPs with Stieltjes Boundary Conditions. In this section, we con-
sider a BVP of the following type.

Lu = f with bju = ¢1, bou = co, (14)

where L = 0% 4+ a10 + ag is differential operator, f € F is a given forc-
ing function, c1,co € R are boundary data, and by, by € F[0,€] are stieltjes
boundary operators at a and b respectively. We want to find v € F such
that the given BVP is satisfied. Let {y1,y2} be fundamental system for
L, ie. yi1,y2 € Ker(L). As mentioned in [I, 8] and similar to the process
in Section Section and Section the solution u is computed as
u=(1- P)LI_,I( f) + PH. The following example illustrates the solution of a
given BVP as in the equation .

ExaMPLE 2.4. Consider a BVP of type Lu = f with boundary conditions
You+ Xo0u = 2, Y1u + £1€u = 1, where the differential operator L = 92, the
forcing function f(z) = e®. Now the solution of the given BVP is computed
similar to previous examples as

u(z) =e* +4(e—1)(z —1).
It is verified that Lu(z) = 0%u(z) = €* and You + Lodu = 2, X1u + X10u = 1.

3. Examples

Two-point BVPs with Stieltjes boundary conditions appear in various real-
world applications, particularly in fields such as physics, engineering, and fi-
nance. These problems involve finding a function that satisfies a differential
equation and certain boundary conditions. One of the real-world applications
(Quantum Particle in a Potential Well) is presented in Example Several
numerical examples are presented in this section to illustrate the proposed
method.

ExampLE 3.1.  [8] Consider the one-dimensional problem of a thin rod
occupying the interval (0, a) on the z-axis. This is one of the classical examples
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of the ordinary linear BVPs [25]. We solve

2
%:f,0<$<1; u(0) = o, u(l) =p, (15)

for the temperature u € C*°[0, 1], where f € C'*°|0, 1] is the prescribed source
density (per unit length of the rod) of heat and «, 3 are the prescribed end
temperatures.

The operator representation of the given BVP is
Lu=f
EOU = q, Zlu = /85

where the differential operator L = 9% with Ker(L) = {1,z}, and the set of
boundary operators is B = {3, X1} with boundary data {«,3}. The null
space projector P is computed as

P=(1-2)%+z%;.
The fundamental right inverse of L7, computed is given by
L;,l = z@ — Cx.

The right inverse ‘H of B is computed as follows: For a given fundamental
system {1,z}, boundary operators {¥g, X1} with boundary data {a, 8}, the
operator H calculated as

W= (1) (_11 (1)) (g) — (1 — ) + Bz.

Now, the solution of the given BVP is

1
T

u=(1-a) [ 5@ dc+a [ (1-05©) de+al—o)+ 5.
In particular, f(z) = e, then the solution is
uz)=e"+B-a—e+z+a-—1
One can verify that u”(z) = ¢ and u(0) = a, u(1) = §.

ExXAMPLE 3.2. (Quantum Particle in a Potential Well) In quantum me-
chanics, the Schrodinger equation is fundamental in describing the quantum
state of a system. Stieltjes boundary conditions can be particularly useful in
modeling quantum systems where the boundary behavior is not just point-
wise but involves integral constraints, reflecting more complex interactions or
distributions of physical quantities.
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Consider a particle in a one-dimensional potential well described by the
time independent Schrédinger equation [5]

)
o2m  dx?

with Stieltjes boundary conditions

b
crtb(a) + By / 0 (@) =,

+ V(z)p(z) = Ey(z)

b
a2tp(b) + 52/ g2(2)Y(r) = 72,

where () is the wave function of the particle, V(z) is the potential, E is the
energy eigenvalue, h is the reduced Planck constant, m is the mass of the par-
ticle, g1(z) and g2(x) are given functions that might represent distributions
of some physical quantity, and «;, 8; and ~; are constants. These integral
boundary conditions can represent physical constraints such as the normal-
ization of the wave function or the presence of distributed sources or sinks at
the boundaries. In a potential well with distributed sources, ¢g;(x) and ga(x)
could represent the strength of these sources over the interval [a, b].

Consider a particle in a potential well with V(x) = 0 for simplicity, in
the interval [0, 1], and boundary conditions with a1 = ay = 1 = [y = 1,
gi(x) =z, g2(x) = 1 and v = 0, 72 = 1. Indeed, for V(x) = 0, the time
independent Schrodinger equation is

2 d(a)

- om de = E@b(x), or
(16)
d*(x) 2
) =—k w(x)v (17)
where k? = T—QE, and the boundary conditions are
1
v+ [ zvi) =0
(18)

1
v+ [ wla) =1,
0
Now, the symbolic representation of the BVP f is

Ty = f, with b1y = ¢1, batp = c3, (19)

where T = 82+k2, b1 =20+ 210z, b = X1 +310, ¢4 =0, cg =1, and f =0.
If we take k = 1, then we have T = 9? + 1. Following the proposed method,
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we have

cos(1) — sin(1)

b(z) = <Cos(1)+m(1)> cos(x) + sin(z).

It is also verified that T4 = 0 and by = 0, bap = 1.

ExaMPLE 3.3. A BVP for a damped oscillator typically involves a second-
order linear differential equation with given boundary conditions [16]. The
general form of the equation for a damped oscillator is:

mi + ct + kx = 0, (20)

where m is the mass of the oscillator, ¢ is the damping coeflicient, k is the
spring constant, x(t) is the displacement as a function of time, @(t) is the
velocity, &(t) is the acceleration. For a BVP, we need to specify boundary
conditions at two different points in time, ¢; and ty. For example, z(t1) = z1,
x(tg) = T9.

Consider a damped oscillator with m = 1, ¢ = 3, and & = 2. Suppose
the boundary conditions are z(0) = 2 and x(1) = 0. Then the equation
becomes & + 3% + 2z = 0 with boundary conditions are z(0) = 2 and z(1) = 0.

The symbolic representation of the BVP for damped oscillator is
Tx = f, with byx = ¢1, box = 9, (21)

WhereT:82+38+2, 0= (C%, b1 =20, b0 =%1,c1=2,c0=0,and f =0.
Following the proposed method, we have

2¢3 (e(**%) - e(*t*%))

2(t) =

This is the solution to the boundary value problem for the given damped
oscillator. It is also verified that Tx = f and bix = 2,box = 0.

4. Conclusion

This study introduces a symbolic method that effectively addresses Stielt-
jes boundary conditions for second-order boundary value problems. By lever-
aging the algebra of integro-differential operators, this approach computes the
Green’s operator and Green’s function at the operator level. The developed
algorithm enhances the implementation of these calculations in mathematical
software, making it a valuable tool for software like Mathematica, Matlab, Sin-
gular, Scilab, Maple, and others. This contribution facilitates more efficient
and accurate problem-solving in mathematical and engineering contexts.
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