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Abstract

A formula for π is derived, using successive approximation of the area
of a wedge of arbitrary central angle cut out from a unit-radius circle. The
resulting formula takes the form of 2n, multiplied by a nested radical of the
order n. In general case, this radical splits into two separate nested radicals
of the same shape and order, which are symmetric in a way that one of them
stems from an arbitrary seed value, s ∈ (0, 1), while the other is started from
the complementary seed, 1 − s. A reduced formula is also derived, with only
one nested radical. The main computational characteristics of both types of
the algorithm were briefly discussed, and compared to that of several other
widely known π-formulas.

MSC 2020: 11B83, 33B10, 68Q25

Key Words and Phrases: π-formula, algorithm, nested radical

1. Introduction

There have been many formulas for calculation of π devised throughout the
history [1]. In this article we derive another one, using a gradual approximation
to the area of an arbitrary wedge cut out from a unit-radius circle. Naturally,
the formula derived here, belonging to the antiquity era of π approximations,
is by far not as computationally efficient as some other already existing ones,
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to mention Ramanujan-Sato algorithms [2] as typical examples. As today
π is known to more than 202 trillion exactly computed and verified decimal
places [2], this article merely presents another formula that is easily shown to
converge to π. Relatively extensive lists of existing π formulas can be found
in [1], [2], and [3].

Trigonometry rules enable calculation of π without calculating neither cir-
cumference of a polygon (Archimedes style), nor its area (similarly as in this
article). For instance, the following equation is easily derived:
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where the square root operation is performed a total of n times. Since sine
function of a very small argument is approximately equal to that argument,
for large n the value of π can be estimated as:
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where the square root operation is performed, again, n times. Similarly, the
validity of the following approximation of π is also easily shown:
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2. The Algorithm

Observe Figure 1. Define a unit circle with radius r = 1, and with the
center in the node O. The central angle α defines a circular wedge whose area
equals r2π(α/(2π)) = α/2. That area can be successively approximated in
the following way. Note the triangle OAB defined by α. It can be regarded as
the roughest approximation to the actual wedge area. If we divide α by 2, the
angle bisector crosses the circle in node C. By adding the area of the triangle
ABC to that of the OAB, we obtain a better approximation of the wedge area.
Next, if we divide the angle α/2 by 2, the new bisector gives the new node
D and creates a new triangle ACD. The successive approximation is obtained
by adding two areas of ACD to the previously updated value. Each further
division will generate twice as many new triangles that gradually fill up the
area of the wedge, getting closer to the true value yet never overreaching it.
Suppose, without a loss of generality, that 0 < α < π/2. Using elementary
trigonometric operations with the above-mentioned triangles, it is easy to show
that the sum of all of their areas after n divisions performed equals exactly:

P̂ (n) = 2n−1 sin
( α

2n

)
. (4)
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Figure 1. Definitions

Next, using the trigonometric formula for the sine of a half-angle and
iterating it the appropriate number of times, it is easy to express the sine
from (4) as a nested radical so that we can obtain:

P̂ (n, s) = 2n−1
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or in an abbreviated form:

P̂ (n, s) = 2n−1R(n, s). (6)

Here, R(n, s) stands for the n-th order nested radical generated from the
quantity s that we shall call ”seed.” Next, s = cos2(α/2), and the total number
of nested square-root operations to perform equals n (the square root in

√
s

is not included in that count).

Suppose that α is some fraction of π, so that α = π/t, where t is an
arbitrary real number larger than 2. Recall that the true area of the wedge
equals α/2. If we approximate that area with (6), we can try to approximate
the π value with the following:

π̂(n, α) = 2t× 2n−1 sin
( α

2n

)
. (7)

Since s = cos2(α/2) = cos2(π/2t), it applies: 2t = π/ arccos
√
s:
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π̂(n, s) =
π × 2n−1

arccos
√
s
R(n, s) =

π

arccos
√
s
P̂ (n, s). (8)

Note that in the right-hand sides of this equation, we operate with true π
value. An n grows, we expect the approximations to improve monotonically.
It is very easy to show that the first derivative of (4) with respect to n is
negative for all n, while the second derivative is positive for all n, meaning
that the marginal contributions to the total area are positive, yet diminishing.
Therefore:

lim
n→∞

π̂(n, s)

π
=

1

arccos
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P̂ (n, s) = 1. (9)

It follows: arccos
√
s = limn→∞ P̂ (n, s). However, from elementary trigonom-

etry: arccosx = arcsin
√
1− x2, where x is any real number. It follows:

arcsin
√
s = arccos

√
1− s. The next trigonometric identity we will apply is:

arcsinx + arccosx = π/2. We can deduce: arccos
√
1− s + arccos

√
s = π/2.

Now we can utilize our observation about arccos
√
s derived from (9) to write

down:
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)
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)
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This is the expression for the exact value of π with infinitely nested radicals
R(∞, s) and R(∞, 1 − s). Note the symmetry: s is a value between 0 and 1
because it is a squared cosine, and 1 − s is its complement. If we have the
nested radicals with n < ∞, we can finally derive formula for the n-th order
approximation to π with the seed value s:

π̂(n, s) = 2n
(
R(n, s) +R(n, 1− s)

)
. (11)

We tested actual algorithms for different values of s, and discovered no
obvious advantages for using any particular value of s. Yet, it should not be
equal to 1 because the algorithm collapses. If we pick s = 1/2, both radicals
obviously become equal, so that (11) takes the form that is computationally
the most efficient one because it needs to perform only a half of operations:

π̂(n, s) = 2n+1R(n, 1/2) . (12)
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3. Computational characteristics

The algorithm for calculation of π described above was tested using Mat-
lab, in normal precision (16 digits). It turned out that this algorithm would
require much better precision for calculation of bigger number of digits because
the computation error accumulates too quickly. However, our goal was not to
derive another slow algorithm for the calculation of additional digits of π. We
just needed to verify numerically that the formula (11) exhibits a tendency
to approach the true value of π as n grows larger. We established that the
convergence rate equals that of the Archimedes algorithm, which is expected
because both rely on the same principles. It is very modest compared to more
modern methods, such as Ramanujan-Sato algorithms [2].

The main practical disadvantage of this algorithm is due to error accumu-
lation—the increase in relative error caused by multiple subtractions of very
similar numbers throughout the algorithm. Specifically, the 1 − 1

2
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)

terms in (5), where 1
2
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√
· · ·
)
becomes increasingly similar to 1 as the algo-

rithm progresses with n. Although our algorithm is theoretically as robust as
Archimedes’s, this issue makes it practically inferior. With standard 16-digit
precision, it cannot produce more than 9 correct digits, despite the algorithm
itself being theoretically sound and correctly performing.

A thorough comparative analysis of the computational characteristics of
this algorithm can be found in [5] or obtained from the author upon request.

4. Conclusions

In this article, a formula for π involving nested radicals, derived from the
successive approximation of the area of a wedge with an arbitrary central angle
cut out from a unit circle, is presented. Its convergence properties, as well as
the challenges posed by numerical error accumulation, were also analyzed and
discussed.
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