IJAM: Volume 37, No. 6 (2024)

DOI: 10.12732/ijam.v37i6.5

 

A NEW BIMODAL DOUBLE DISTRIBUTION ON

THE REAL LINE AND ITS APPLICATION

 

Hajar M. Alkhezi 1, M. E. Ghitany 1,§,

Mai F. Alfahad 1, J. Mazucheli 2

 

1  Department of Statistics and Operations Research

Faculty of Science, Kuwait University, KUWAIT

2  Department of Statistics

Universidade Estadual de Maring

Maring´a, PR, BRAZIL

 

 

Abstract.  In this paper, we propose a new bimodal double distribution on the real line using random sign mixture transform and study its associated statistical inferences. Maximum likelihood estimation is used to estimate the underlying parameters. Monte Carlo simulation experiments are carried out to examine the performance of the estimators and the corresponding confidence intervals of the parameters. The proposed distribution is fitted to a bimodal real data set and is compared with other recently published bimodal double distributions.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i6.5
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 6

References

[1] M. F. Alfahad, M. E. Ghitany, A. N. Alothman, S. Nadarajah, A bimodal extension of the log-normal distribution on the real line with an application to DNA microarray data. Mathematics, 11, No 15 (2023), Art. 3360.

[2] A. Almutairi, M. E. Ghitany, A. N. Alothman, R. C. Gupta, Double inverse-Gaussian distributions and associated inference. Journal of the Indian Society for Probability and Statistics, 24 (2023), 157-182.

[3] E. Aly, A unifieded approach for developing Laplace-type distributions. Journal of the Indian Society for Probability and Statistics, 19 (2018), 245-269.

[4] N. Balakrishnan, S. Kocherlakota, On the double Weibull distribution: Order statistics and estimation. Sankhya: The Indian Journal of Statistics Series B, 47 (1985), 161-178.

[5] S. Bansal, N. Gupta, Weighted extropies and past extropy of order statistics and k-record values. Communications in Statistics-Theory and Methods, 51, No 17 (2021), 1-24.

[6] M. Cankaya, Asymmetric bimodal exponential power distribution on the real line. Entropy, 20 (2018), 1-19.

[7] M. A. Chaudhry, M. Ahmad, On a probability function useful in size modelling. Canadian Journal of Forest Research, 23 (1993), 1679-1683.

[8] A. V. Dattatreya Rao, V. L. Narasimham, Linear estimation in double Weibull distribution. Sankhya: The Indian Journal of Statistics Series B, 51 (1989), 24-64.

[9] Z. Govindarajulu, Best linear estimates under symmetric censoring of the parameters of a double exponential population. Journal of the American Statistical Association, 61 (1966), 248-258.

[10] F. Lad, G. Sanfilippo, G. Agro, Extropy: Complementary dual of entropy. Statistical Science, 30, No 1 (2015), 40–58.

[11] J. Mazucheli, A. F. Menezes, S. Dey, S. Nadarajah, Improved parameter estimation of the Chaudhry and Ahmad distribution with climate applications. Chilean Journal of Statistics, 11 (2020), 137-150.

[12] A. Plucinska, On certain problems connected with a division of a normal population into parts. Zastosow. Mat., 8 (1965), 117-125.

[13] R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023.

[14] C. E. Shannon, A mathematical theory of communication. Bell System Technical Journal, 27, No 3 (1948), 379-423.

[15] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52 (1988), 479-487.

 

IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/