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Abstract

Fractional diffusion has many applications in science and engineering as
it models non-local processes and phenomena. However, numerically solv-
ing such problems involves systems of linear algebraic equations with dense
matrices. For practical problems such systems can be extremely large and
applying the usual LU factorization methods becomes an extremely expensive
computational task. The Best Uniform Rational Approximation (BURA) and
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related methods have been developed in order to compute an approximation of
the inverse A−α of a symmetric positive definite matrix A via an approximation
of the scalar function tα, α ∈ (0, 1), t ∈ [0, 1]. Thus, the solution of a system
of linear algebraic equations Aαu = f can be computed approximately via
computing several auxiliary systems with as sparse matrices as A.

This paper is devoted to the analysis of various numerical issues that arise
in the process of the BURA computations when α ∈ (1, 2). Different reformu-
lations of the classical BURA setting are considered in order to improve the
stability of the computational process. Furthermore, since the direct BURA
method does not preserve the symmetric positive definite property of A, al-
ternatives are proposed. They are based on a superposition of several BURA
solvers with smaller αi ∈ (0, 1]. Theoretical and experimental analysis on their
behavior is provided.

MSC 2020: 08-08, 15Axx, 41A20, 41A44, 65F45
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1. Introduction

In this paper, we investigate computational issues regarding the derivation
of an approximate solution for the fractional linear equation

Aαu = f , α ∈ (1, 2). (1)

The matrix A ∈ RN×N is sparse, symmetric, and positive definite (SPD) with
eigenvalues {λi}Ni=1, such that 0 < λ1 < λ2 < · · · < λN < +∞, and normalized
eigenvectors {Ψi}Ni=1. Denote by ⟨, ⟩ the Euclidean dot product in RN . Since

f =

N∑
i=1

⟨f ,Ψi⟩Ψi =:

N∑
i=1

fiΨi, (2)

the eigenvectors of Aα coincide with the eigenvectors of A, while the eigenval-
ues of Aα are the corresponding power of the eigenvalues of A, we obtain that
the exact solution of (1) is expanded in the following way:

u = A−αf =

N∑
i=1

λ−α
i ⟨f ,Ψi⟩Ψi =

N∑
i=1

λ−α
i fiΨi. (3)

Even though A is sparse, the matrix Aα is everywhere dense, thus for
large values of N it is practically impossible to explicitly compute it or even
store it in the computer memory. Therefore, the action of A−α needs to be
approximated.

When α ∈ (0, 1), the problem (1) has been extensively studied in the
last decade within the context of fractional sub-diffusion (see for example
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[1, 2, 3, 4, 5, 6, 7] and the surveys [8, 9]). There, the discretization of the
problem Aαu = f , where A is an elliptic operator of second order, is done via
finite elements or finite differences approximations, resulting in a symmetric
matrix A that acts on the vector u of the unknown values of u at the mesh
points. Actually, many examples of problems of the type (1) in the literature
can be related to approximation of elliptic equations with various boundary
conditions.

When α ∈ (1, 2), the problem (1) is related to fractional super-diffusion.
Most of the approaches for the sub-diffusion setting rely heavily on α ∈ (0, 1),
thus are non-applicable here. In this paper we apply the BURA method [10]
and our focus is on the variety of numerical issues that arise from that. For the
validation of the computations we use theoretical estimates and comparison
analysis among different realizations of the method. The additive realization
of the BURA solver has been analyzed in [11]. Here, we deal with its multi-
plicative version.

2. Best Uniform Rational Approximation

The abbreviation BURA stands for Best Uniform Rational Approximation.
Let us consider the min-max problem: find rα,k ∈ R(k, k), where rα,k(t) =
Pα,k(t)/Qα,k(t), Pα,k and Qα,k are polynomials of degree k, such that

max
t∈[0,1]

|tα − rα,k(t)| = min
rk(t)∈R(k,k)

max
t∈[0,1]

|tα − rk(t)|, α ∈ (0, 2).

Then the error Eα,k of the k-BURA element rα,k is the maximal absolute value
for the error function εα,k(t), namely

Eα,k := max
t∈[0,1]

|εα,k(t)| = max
t∈[0,1]

|tα − rα,k(t)|. (4)

A sharp estimate of Eα,k (compare with Table 1) is derived in [12]:

Eα,k = 4α+1| sin(απ)|e−2π
√
αk. (5)

Following [5] we introduce the approximation of A−α in the form

A−α ≈ λ−α
1 rα,k(λ1A−1) =⇒ uα,k = λ−α

1 rα,k(λ1A−1)f , (6)

where uα,k is the BURA numerical solution of the linear algebraic system
(1). The λ1-normalization maps the spectrum of λ1A−1 onto the unit interval
(0, 1], guaranteeing that 1 is always an eigenvalue. Denoting ti := λ1/λi and
f̄i = fi/∥f∥2, and using the commutativity of the matrix powers, we obtain
the following error estimate:

∥u− uα,k∥22 = λ−2α
1

N∑
i=1

(
εα,k(ti)f̄i

)2 ⇒ ∥u− uα,k∥2 ≤ λ−α
1 Eα,k∥f∥2. (7)
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Table 1. The BURA theoretical error Eα,k for different values
of α and k.

k α = 0.25 α = 0.5 α = 0.625 α = 0.75 α = 0.875 α = 1.25 α = 1.5 α = 1.75

1 9.7494E-02 4.3689E-02 2.8156E-02 1.6457E-02 7.3262E-03 1.1027E-02 1.8931E-02 2.4876E-02
2 3.1116E-02 8.5015E-03 4.3988E-03 2.0799E-03 7.5068E-04 5.8020E-04 5.7554E-04 3.3350E-04
3 1.2348E-02 2.2821E-03 9.9930E-04 4.0408E-04 1.2560E-04 6.3312E-05 4.7278E-05 2.0348E-05
4 5.5662E-03 7.3656E-04 2.8032E-04 9.9540E-05 2.7373E-05 9.8222E-06 5.9201E-06 2.0622E-06
5 2.7348E-03 2.6896E-04 9.0476E-05 2.8676E-05 7.0894E-06 1.9015E-06 9.5789E-07 2.8067E-07
6 1.4312E-03 1.0747E-04 3.2337E-05 9.2522E-06 2.0791E-06 4.3049E-07 1.8526E-07 4.6720E-08
7 7.8650E-04 4.6037E-05 1.2502E-05 3.2566E-06 6.7060E-07 1.0972E-07 4.0960E-08 9.0299E-09
8 4.4950E-04 2.0852E-05 5.1471E-06 1.2288E-06 2.3334E-07 3.0713E-08 1.0062E-08 1.9616E-09
9 2.6536E-04 9.8893E-06 2.2318E-06 4.9096E-07 8.6419E-08 9.2829E-09 2.6930E-09 4.6846E-10
10 1.6100E-04 4.8760E-06 1.0109E-06 2.0584E-07 3.3728E-08 2.9918E-09 7.7431E-10 1.2105E-10

Let us denote the zeros of Pα,k and Qα,k by {ζi}ki=1 and {di}ki=1, respec-
tively. For α ∈ (0, 2), all zeros {ζi} and poles {di} of rα,k are real and different.
Moreover (see [12]), the following interlacing property holds true:

0 > ζ1 > d1 > ζ2 > d2 > · · · > ζk > dk > −∞, α ∈ (0, 1),

d1 > 1 > ζ1 > 0 > ζ2 > d2 > · · · > ζk > dk > −∞, α ∈ (1, 2).
(8)

Thus, we can rewrite the BURA element in a computationally more convenient
form:

rα,k(t) = c0

k∏
i=1

t− ζi
t− di

, where c0 = ±Eα,k

k∏
i=1

di
ζi
, α ∈ (0, 2). (9)

For the derivation of c0, we have used that 0 is always an extreme point for
εα,k(t) (see [12]). Therefore, due to (8), it is straightforward to conclude that
rα,k(0) = Eα,k, when α ∈ (0, 1) and rα,k(0) = −Eα,k, when α ∈ (1, 2).

In terms of the matrix representation, the BURA solution is in the form

uα,k = λ−α
1 c0

[
k∏

i=1

(λ1I− ζiA)(λ1I− diA)−1

]
f . (10)

Because of the exponential decay of Eα,k with respect to k (see (5)), it is

suggested by (7) that the operator λ−α
1 rα,k(λ1A−1) is a very good and adequate

ℓ2-approximation of A−α. This is indeed the case for α ∈ (0, 1), where not
only the approximation error is optimal (within the class of the (k, k) rational
functions, see [9]), but also key properties of A−α (such as SPD, double non-
negativity, etc.) are inherited by its approximant. However, this is not the
case for α ∈ (1, 2) as the spectrum of λ−α

1 rα,k(λ1A−1) is{
λ−α
1 rα,k

(
λ1

λN

)
, λ−α

1 rα,k

(
λ2

λN

)
, . . . , λ−α

1 rα,k

(
λN

λN

)}
=

{
rα,k(t1)

λα
1

,
rα,k(t2)

λα
1

, . . . ,
rα,k(tN )

λα
1

}
,
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and rα,k(ti) < 0 whenever ti < ζ1. More precisely, if the condition number

κ(A) of A is larger than ζ−1
1 , the approximant is no longer an SPD matrix.

For example, when A is generated via a finite difference discretization of an
elliptic operatorA on a uniform grid with a step h, it is well-known that κ(A) ∼
O(h−2). According to Table 2, when h ≤ 10−4 none of its approximants are
SPD matrices for all choices of α ∈ {1.25, 1.50, 1.75} and k ∈ [1, 10].

Table 2. Values of ζ1 for the BURA elements rα,k with α =
{1.25, 1.5, 1.75} and k ∈ [1, 10]

α
k

1 2 3 4 5 6 7 8 9 10

1.25 1.49E-02 1.47E-03 2.51E-04 5.67E-05 1.52E-05 4.64E-06 1.55E-06 5.62E-07 2.15E-07 8.72E-08
1.5 3.22E-02 3.52E-03 6.73E-04 1.68E-04 5.02E-05 1.67E-05 6.14E-06 2.40E-06 1.00E-06 4.35E-07
1.75 5.07E-02 5.58E-03 1.15E-03 3.13E-04 1.00E-04 3.60E-05 1.41E-05 5.89E-06 2.60E-06 1.20E-06

An alternative is to apply BURA products. In what follows, we will con-
sider the notation ᾱ for the set {α1, α2, . . . , αn}, αi ∈ (0, 1], with the property∑

αi = α, and we will consider the operators

A−α ≈ λ−α
1 rᾱ,k(λ1A−1), where rᾱ,k := rαn,k ◦ rαn−1,k ◦ · · · ◦ rα1,k. (11)

The approximant λ−α
1 rᾱ,k(λ1A−1) is always an SPD matrix. Analogously to

(7), we derive

∥u− uᾱ,k∥2 = λ−α
1

√√√√√ k∑
i=1

tαi −
k∏

j=1

rαj ,k(ti)

2

f̄2
i

≤ λ−α
1 max

i

∣∣∣∣∣∣tαi −
k∏

j=1

rαj ,k(ti)

∣∣∣∣∣∣ ∥f∥2.
(12)

Let us first consider the case n = 2, i.e., α = α1+α2, α1,2 ∈ (0, 1]. At first
glance, we directly have the estimate∣∣tαi −

(
tα1
i + εα1,k(ti)

)(
tα2
i + εα2,k(ti)

)∣∣
= |tα1

i εα2,k(ti) + tα2
i εα1,k(ti) + εα1,k(ti)εα2,k(ti)|

≤ Eα1,k + Eα2,k + Eα1,kEα2,k.

However, the upper bound is not sharp in practice. Indeed, the first two terms
of the estimated expression become smaller as ti decreases, while the order of
the last term is a product of orders and is dominated by the former terms.
What we observe is that, since t1 = 1 and 1 is also an extreme point for both
εα1,2,k(t) with rα1,2,k(1) = 1−Eα1,2,k, the dominant term in (12) is the one for
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t1, where the computation is explicit and gives rise to∣∣tα1 −
(
tα1
1 + εα1,k(t1)

)(
tα2
1 + εα2,k(t1)

)∣∣ = |1− (1− Eα1,k)(1− Eα2,k)|
= Eα1,k + Eα2,k − Eα1,kEα2,k.

Moreover, whenever t2 ≪ 1 we have

∥u− uᾱ,k∥2 ≈ λ−α
1 (Eα1,k + Eα2,k − Eα1,kEα2,k) |f̄1| · ∥f∥2. (13)

Finally, according to (5), Eα,k is a convex function with respect to α, thus the
smallest error for n = 2 will be for the choice α1,2 = α/2. Similarly, in the
general case the optimal choice is α1,2,...,n = α/n.

3. Numerical Results

As an example, from now on we consider A = diag(−1, 2,−1)/h2 with
h = 2−18 and N = 218−1. The eigenvalues and eigenvectors of A are explicitly
known:

λi =
4

h2
sin2

(
iπh

2

)
, Ψi =

{
sin(iπjh)

}N

j=1
, i = 1, 2, . . . , 218 − 1.

We investigate the cases α ∈ {1.25, 1.50, 1.75} and k ∈ [1, 10]. For each of
them, we compute the direct BURA solution (6) and several product BURA
solutions (11). For the latter, we always consider the case n = 2 with
ᾱ = {1, 1 − α} and ᾱ = {α/2, α/2}, while for n > 2 we only consider the
optimal partition α1,...,n = α/n. For the case α = 1.25 we consider also
ᾱ = {0.50, 0.75}. We study the case ᾱ = {1, 1 − α} because of its computa-
tional efficiency. Here, there is no need to approximate the action of A−1, thus
we solve only k + 1 systems instead of 2k for all the other partitions.

According to (10), we need to sequentially solve k linear systems with
sparse matrices. Moreover, according to (8) we have that

κ(λ1I− diA) =
λ1 − diλn

λ1 − diλ1
=⇒

κ(A) < κ(λ1I− d2A) < · · · < κ(λ1I− dkA), ∀α ∈ (0, 2).

When α ∈ (0, 1), we have that λ1I − d1I is an SPD matrix with κ(A) <
κ(λ1I− d1A) < κ(λ1I− d2A). When α ∈ (1, 2), we have that d1A− λ1I is an
SPD matrix with κ(A) < κ(d1A − λ1I), and in this case we change the term
(λ1I − ζ1A)(λ1I − d1A)−1 in (10) to (ζ1A − λ1I)(d1A − λ1I)−1. Thus, all the
linear systems we solve numerically are related to sparse and SPD matrices.

We consider two different choices for the right-hand-side f :

f1 = 1 and f2 = Ψ1 −Ψ2 +Ψ3.

For both of them the exact solutions u1 and u2 of (1) are computed explicitly
via spectral decomposition. We consider two equivalent reformulations of (10),
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namely

uα,k = λ−α
1 c0

[
k∏

i=1

(
I− ζi

λ1
A
)(

I− di
λ1

A
)−1

]
f

=: λ−α
1 c0

[
k∏

i=1

(
I− ζ̄iA

) (
I− d̄iA

)−1

]
f , ζ̄i =

ζi
λ1

, d̄i =
di
λ1

,

(14)

and

uα,k = λ−α
1 c0

[
k∏

i=1

(
ζi
di
I+

(
1− ζi

di

)(
I− di

λ1
A
)−1

)]
f

= λ−α
1 c0

[
k∏

i=1

(
ζ̄i
d̄i
I+

(
1− ζ̄i

d̄i

)(
I− d̄iA

)−1

)]
f .

(15)

The numerical computations are performed in MATLAB with the standard
explicit solver for linear systems. The zeros, poles, and the theoretical errors
are computed using the BRASIL software [13].

In Table 3, Table 4, and Table 5 we compare formulas (10) and (14) for
f = f1 to study the numerical stability of the MATLAB standard explicit
solver, as well as to check the robustness of (13). For each of the considered
choices for α and k, we compare the numerically computed corresponding
relative error ratios

λα
1 ∥u− uᾱ,k∥2(

1−
∏n

1=1(1− Eαi,k)
)
∥f∥2

(16)

and their values with |f̄1|. In our setting, we have

f̄1,1 ≈ 0.9003, respectively f̄2,1 =
1√
3
≈ 0.5773.

According to (13), the numbers should be in the interval
[
|f̄1|, 1

]
. Whenever

they are not, this is an indication that either the order of the linear system
solver error significantly affects the computations or the poles and zeros of the
BURA solution, respectively the BURA error Eᾱ,k are inaccurately computed.
In both cases, the corresponding results are unreliable.

We observe a better numerical stability when (14) is applied. The reason
is that after the normalization, the order of the elements of the matrices we
compute with decreases. The computational inaccuracies increase with α and
k. When product BURA solutions are used, the relative error ratios are prac-
tically the same as |f̄1|, validating our observation from the end of Section 2.
The numerical computations with (14) behave unstably when for a certain αi

and k the theoretical error Eαi,k from Table 1 reaches order of magnitude −8.
This is the case for α = 0.875 and k ≥ 9; α = 1.25 and k ≥ 7; α = 1.5 and
k ≥ 6; α = 1.75 and k ≥ 6. The computational issues for (10) start an order
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Table 3. Relative error ratio for f = f1 and α = 1.25 with
respect to (7) and the practical error estimate (13).

k
α1 = 1.25 α1 = 1, α2 = 0.25 α1 = 0.75, α2 = 0.5 α1,2 = 0.675 α1,2,3,4,5 = 0.25
(10) (14) (10) (14) (10) (14) (10) (14) (10) (14)

1 0.953 0.952 0.901 0.902 0.902 0.902

2 0.962 0.900 0.901 0.901 0.900
3 0.984 0.974 0.901 0.901 0.904 0.901

4 0.932 0.926 0.901 0.903 0.901 0.902 0.901 0.901

5 0.884 0.954 0.900 0.906 0.900 0.912 0.903 0.900
6 0.974 0.908 0.900 0.910 0.901 0.924 0.903 0.901

7 7.522 0.818 0.901 0.917 0.902 0.936 0.901 0.901

8 65.41 0.515 0.901 0.930 0.902 0.907 0.905 0.901
9 158.4 1.798 0.901 0.955 0.904 0.900 0.911 0.901

10 97.35 8.159 0.902 0.900 0.921 0.908 0.999 0.914 0.902 0.900

Table 4. Relative error ratio for f = f1 and α = 1.5 with
respect to (7) and the practical error estimate (13).

k
α1 = 1.5 α1 = 1, α2 = 0.5 α1,2 = 0.75 α1,2,3 = 0.5 α1,2,3,4,5,6 = 0.25

(10) (14) (10) (14) (10) (14) (10) (14) (10) (14)

1 0.9429 0.9428 0.9005 0.9019 0.9020 0.9004 0.9009

2 0.9401 0.9387 0.9007 0.9008 0.9007 0.9007 0.9003
3 0.9722 0.9584 0.9003 0.9005 0.9025 0.9017 0.9003 0.9005 0.9005

4 1.0310 0.9784 0.9016 0.9009 0.9087 0.9011 0.9016 0.9009 0.9004 0.9005

5 0.2478 0.9157 0.9042 0.9004 0.9239 0.9025 0.9042 0.9004 0.9002 0.9003
6 2.8965 0.8700 0.9095 0.9009 0.9083 0.9020 0.9094 0.9008 0.9001 0.9004

7 7.1575 0.6067 0.9186 0.9014 0.8814 0.9046 0.9183 0.9012 0.9007 0.9005

8 22.676 1.4584 0.9273 0.9017 0.9914 0.9137 0.9266 0.9012 0.9008 0.9005
9 100.31 6.6371 0.9518 0.9029 1.0308 0.9437 0.9508 0.9015 0.9008 0.9004

10 689.20 27.157 0.9148 0.9057 1.0713 0.9895 0.9128 0.9036 0.9020 0.9004

Table 5. Relative error ratio for f = f1 and α = 1.75 with
respect to (7) and the practical error estimate (13).

k
α1 = 1.75 α1 = 0.75, α2 = 1 α1 = 1, α2 = 0.75 α1,2 = 0.875 α1,2,3,4,5,6,7 = 0.25
(10) (14) (10) (14) (10) (14) (10) (14) (10) (14)

1 0.9372 0.9373 0.9009 0.9009 0.9014 0.9006
2 0.9343 0.9321 0.9006 0.9004 0.9006 0.9004 0.9011 0.9010 0.9003
3 0.9161 0.9264 0.9016 0.9008 0.9016 0.9008 0.9015 0.9005 0.9004

4 0.7941 0.9437 0.9084 0.9008 0.9084 0.9008 0.9227 0.9019 0.9003 0.9004

5 1.4346 0.9486 0.9232 0.9018 0.9231 0.9017 0.9085 0.9018 0.9002 0.9003
6 3.3468 0.6627 0.9095 0.9033 0.9093 0.9030 0.2041 0.9060 0.9001 0.9003

7 14.033 1.5968 0.8837 0.9063 0.8835 0.9066 0.6843 0.9228 0.9005 0.9004
8 58.944 10.171 1.0006 0.9220 1.0003 0.9207 3.1998 0.9737 0.9006 0.9004
9 102.28 38.922 1.0515 0.9655 1.0497 0.9645 9.1176 1.1124 0.9008 0.9004

10 15543.5 174.32 1.1337 1.0493 1.1236 1.0509 21.396 1.5432 0.9020 0.9004

of magnitude earlier, e.g., when Eαi,k ∼ O(10−7). The problem is the dou-
ble precision arithmetic used by the direct MATLAB solver, which affects the
order of the residuals, related to each of the 2kn systems of linear equations.
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Furthermore, we observe that the ratio (16) is closer to |f̄1| when smaller
αi’s are used in the partition of ᾱ. The reason is the clustering of the extreme
points of εαi,k(t) at zero (see [14]) which is stronger, when αi is smaller. Thus,
the ratio (16) tends to |f̄1| when maxi αi tends to zero.

Our numerical experiments show that the most computationally stable re-
formulation of (10) is (15). Here, apart from the performed λ1-normalization,
all matrix-vector multiplications corresponding to the numerator terms of the
BURA element are avoided, due to extracting the integer part from the ra-
tional multipliers (t − ζi)/(t − di) in (9). The numerically computed relative
errors ∥u − uα,k∥2/∥f∥2 for k ∈ {4, 5, 6, 7} are documented in Table 6. As
expected, the smallest numbers come from the direct BURA solution, since
it is the best approximant among the whole class of (k, k)-rational approxi-
mations. However, the half-splitting product BURA solution ᾱ = {α/2, α/2}
provides the smallest relative errors among all product BURA solutions and
in the same time the matrix λ−α

1 rᾱ,k(λ1A−1) is an SPD. For α = 1.75 we have
respectively

∥u1 − u1,1.75,8∥2
∥f1∥2

= 2.36 · 10−10 > 1.48 · 10−10 =
∥u1 − u1,1.75,7∥2

∥f1∥2
,

∥u2 − u2,1.75,8∥2
∥f2∥2

= 2.41 · 10−10 > 2.34 · 10−10 =
∥u2 − u2,1.75,7∥2

∥f2∥2
,

which contradicts with the monotonicity of Eα,k with respect to α. This is
another indicator for strong computational issues for the direct BURA method
when α = 1.75 and k ≥ 7.

Table 6. ℓ2 Relative Error ∥u − uα,k∥2
/
∥f∥2 for f = f1,2,

where uα,k is computed with (15)

α α =
∑

αi
k = 4 k = 5 k = 6 k = 7

f1 f2 f1 f2 f1 f2 f1 f2

1.25

α1 = 1.25 5.20E-07 3.59E-07 1.04E-07 1.03E-07 2.31E-08 1.63E-08 5.73E-09 5.38E-09
α1,2 = {0.25, 1} 2.87E-04 1.86E-04 1.41E-04 9.26E-05 7.37E-05 4.88E-05 4.05E-05 2.66E-05
α1,2 = {0.5, 0.75} 4.31E-05 2.79E-05 1.53E-05 9.96E-06 6.01E-06 4.05E-06 2.54E-06 1.71E-06
α1,2 = 0.675 2.89E-05 1.88E-05 9.34E-06 6.58E-06 3.34E-06 2.30E-06 1.29E-06 8.28E-07
α1,2,3,4,5 = 0.25 1.42E-03 9.19E-04 7.00E-04 4.60E-04 3.67E-04 2.43E-04 2.02E-04 1.33E-04

1.5

α1 = 1.5 1.87E-07 1.88E-07 2.84E-08 1.90E-08 5.41E-09 5.26E-09 1.00E-09 9.20E-10
α1,2 = {0.5, 1} 2.14E-05 1.39E-05 7.81E-06 5.03E-06 3.12E-06 2.06E-06 1.34E-06 8.86E-07
α1,2 = 0.75 5.79E-06 3.92E-06 1.67E-06 1.13E-06 5.38E-07 3.45E-07 1.90E-07 1.28E-07
α1,2,3 = 0.5 6.42E-05 4.16E-05 2.34E-05 1.51E-05 9.37E-06 6.18E-06 4.01E-06 2.66E-06
α1,2,3,4,5,6 = 0.25 9.56E-04 6.17E-04 4.73E-04 3.07E-04 2.48E-04 1.62E-04 1.37E-04 8.88E-05

1.75

α1 = 1.75 3.54E-08 3.17E-08 4.86E-09 4.38E-09 6.16E-10 5.49E-10 1.48E-10 2.34E-10
α1,2 = {0.75, 1} 1.63E-06 1.07E-06 4.70E-07 3.09E-07 1.52E-07 9.75E-08 5.37E-08 3.53E-08
α1,2 = {1, 0.75} 1.63E-06 1.07E-06 4.70E-07 3.09E-07 1.52E-07 9.75E-08 5.37E-08 3.53E-08
α1,2 = 0.875 8.98E-07 6.05E-07 2.33E-07 1.50E-07 6.85E-08 4.53E-08 2.24E-08 1.51E-08
α1,2,3,4,5,6,7 = 0.25 6.28E-04 4.04E-04 3.11E-04 2.01E-04 1.63E-04 1.06E-04 9.00E-05 5.80E-05

Finally, applying the BURA realization (15), in Table 7, Table 8, and
Table 9 we document the relative error ratios (16) for both considered right-
hand-sides f = f1,2 and α = 1.25, 1.5, 1.75, respectively. Again, we observe
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Table 7. Relative error ratios (16) for f = f1,2, uᾱ,k are com-
puted via (15), and α = 1.25.

k
α1 = 1.25 α1 = 1, α2 = 0.25 α1 = 0.75, α2 = 0.5 α1,2 = 0.675 α1,2,3,4,5 = 0.25
f1 f2 f1 f2 f1 f2 f1 f2 f1 f2

1 0.9525 0.9061 0.9008 0.5943 0.9015 0.5892 0.9024 0.5906 0.9017 0.6184

2 0.9616 0.7597 0.9004 0.5895 0.9010 0.6010 0.9009 0.6225 0.9004 0.5931
3 0.9741 0.9666 0.9009 0.5810 0.9011 0.6064 0.9036 0.6134 0.9009 0.5809

4 0.9260 0.6392 0.9008 0.5844 0.9014 0.5848 0.9008 0.5867 0.9007 0.5844

5 0.9568 0.9481 0.9004 0.5921 0.9004 0.5854 0.9029 0.6357 0.9004 0.5921
6 0.9397 0.6624 0.9005 0.5960 0.9013 0.6076 0.9033 0.6224 0.9005 0.5959

7 0.9142 0.8575 0.9009 0.5923 0.9019 0.6078 0.9012 0.5791 0.9009 0.5924

8 0.7639 0.7334 0.9009 0.5843 0.9015 0.5867 0.9047 0.6081 0.9009 0.5843
9 0.4165 0.7204 0.9006 0.5787 0.9027 0.5808 0.9079 0.6414 0.9006 0.5787

10 1.1664 1.6150 0.9004 0.5801 0.9057 0.5998 0.9102 0.6298 0.9004 0.5800

Table 8. Relative error ratios (16) for f = f1,2, uᾱ,k are com-
puted via (15), and α = 1.50.

k
α1 = 1.5 α1 = 1, α2 = 0.5 α1,2 = 0.75 α1,2,3 = 0.5 α1,2,3,4,5,6 = 0.25
f1 f2 f1 f2 f1 f2 f1 f2 f1 f2

1 0.9428 0.8862 0.9005 0.5850 0.9020 0.5868 0.9004 0.5865 0.9009 0.6018

2 0.9387 0.7487 0.9007 0.5865 0.9007 0.6123 0.9007 0.5864 0.9003 0.5858

3 0.9585 0.7426 0.9005 0.5954 0.9017 0.5843 0.9005 0.5953 0.9005 0.5786
4 0.9788 0.9850 0.9009 0.5839 0.9011 0.6101 0.9009 0.5839 0.9005 0.5805

5 0.9195 0.6140 0.9004 0.5804 0.9024 0.6100 0.9004 0.5804 0.9003 0.5847
6 0.9060 0.8802 0.9009 0.5946 0.9015 0.5785 0.9008 0.5945 0.9004 0.5865

7 0.7570 0.6967 0.9013 0.5970 0.9044 0.6087 0.9011 0.5969 0.9005 0.5844

8 0.4707 0.8818 0.9014 0.5843 0.9102 0.6250 0.9009 0.5840 0.9005 0.5803
9 2.2802 2.8424 0.9023 0.5793 0.9294 0.6226 0.9012 0.5785 0.9004 0.5778

10 12.313 12.669 0.9047 0.5896 0.9653 0.6484 0.9024 0.5879 0.9003 0.5787

Table 9. Relative error ratios (16) for f = f1,2, uᾱ,k are com-
puted via (15), and α = 1.75.

k
α1 = 1.75 α1 = 0.75, α2 = 1 α1 = 1, α2 = 0.75 α1,2 = 0.875 α1,2,3,4,5,6,7 = 0.25

f1 f2 f1 f2 f1 f2 f1 f2 f1 f2

1 0.9373 0.8463 0.9009 0.5808 0.9009 0.5808 0.9014 0.5873 0.9006 0.5921
2 0.9321 0.8128 0.9004 0.5949 0.9004 0.5949 0.9010 0.5967 0.9003 0.5819

3 0.9264 0.6129 0.9008 0.5797 0.9008 0.5797 0.9005 0.5849 0.9004 0.5778
4 0.9441 0.8461 0.9007 0.5935 0.9008 0.5935 0.9018 0.6070 0.9004 0.5788

5 0.9516 0.8579 0.9017 0.5930 0.9017 0.5929 0.9016 0.5799 0.9003 0.5810

6 0.7241 0.6459 0.9026 0.5794 0.9026 0.5792 0.9052 0.5987 0.9003 0.5819
7 0.8996 1.4212 0.9065 0.5952 0.9066 0.5952 0.9176 0.6195 0.9004 0.5807
8 6.6123 6.7402 0.9185 0.6123 0.9185 0.6111 0.9605 0.6459 0.9004 0.5787
9 23.884 25.097 0.9519 0.6355 0.9511 0.6271 1.0586 0.7297 0.9004 0.5775

10 112.56 126.60 1.0190 0.6917 1.0160 0.6732 1.3461 0.9910 0.9003 0.5780

that for both the cases the relative error ratios for all product BURA solutions
are close to the normalized coefficient f̄1 of f , corresponding to the contribution
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of Ψ1 in its spectral decomposition. For f1 this is not that impressive, as the
contribution of Ψ1 is quite significant (f̄1,1 ≈ 0.9003), while the numbers are
uniformly bounded from above by 1. In this case, the behavior of the direct
BURA solution does not differ much from the one of the product BURAs. For
f2, however, the difference in the behaviours of the direct BURA solution and
the product BURA solutions is much better illustrated. In the direct setting,
the contributions of all eigenvectors of A in the spectral decomposition of
the right-hand-side are equally weighted. In the product setting, due to the
additional multiplications with powers of ti in the derivation of the theoretical
error estimate, the contribution of Ψi decreases towards

∏n
j=1Eαj ,k when i

tends to N . On our particular example, even though the contributions of the
first three eigenvectors are equal (f̄2,1 = f̄2,2 = f̄2,3 = 1/

√
3), the effect of Ψ2,3

on the approximation ℓ2 error is almost negligent. On one hand, this can be
explained by the sparse representation of f2 in the basis {Ψi}N1 and that the
chances for some of t2,3 to hit another extreme point of the error function εᾱ,k
are slim, but on the other hand those are the two most significant coefficients
after f̄2,1 in it, thus the example is illustrative enough.

4. Discussion

Even though the product BURA method is by far not optimal with respect
to minimizing the approximation error ∥u−uᾱ,k∥2 and in this aspect it can not
compete with the direct BURA method, the SPD property of the matrix A−1

is inherited by the approximant λ−α
1 rᾱ,k(λ1A−1) for all choices of the splitting

ᾱ = {α1, . . . , αn} whenever αi ∈ (0, 1] for every i = 1, . . . , n. Moreover, due
to the decaying contributions into the error estimate of the eigenvectors that
correspond to larger eigenvalues, ∥u− uᾱ,k∥2 is dominated by

λ−α
1

(
1−

n∏
j=1

(
1− Eαj ,k

))
|f̄1| · ∥f∥2.

Thus, the error is robust with respect to the choices of α and k, which is illus-
trated in Tables 7 – 9. As a byproduct, this allows for a reliable a priori error
analysis. One option is to choose a small k (even k = 1 seems to work!) and
a suitable ᾱ, for which the error term ∥u−uᾱ,k∥2 can somehow be estimated,
and the derived bounds can be applied to all other choices of k and ᾱ. Another
option is to find a lower bound for the smallest eigenvalue λ1 of A and then a
good approximant for the first eigenvector Ψ1. Now,

f̄1 =
⟨f ,Ψ1⟩√
⟨f , f⟩

,

provides a good guess for (16) and it is not necessary to know anything be-
forehand for the exact solution u in order to localize the theoretical value of
∥u− uᾱ,k∥2 for all choices of α ∈ (1, 2) and k ∈ N.
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Applying direct solvers to the linear systems of equations in (10) leads
to computational instability for the direct BURA method when α and/or k
increases. Efficient iterative solvers need to be taken into account, which will
be a subject of future research.

5. Conclusions and future work

In this paper we theoretically and experimentally analyzed a variety of
computational issues that arise when numerically solving (1). Since the matrix
Aα is dense, it is practically impossible to compute A−α or even to store
in the computer memory the entries of Aα when the size of the matrix is
large. Therefore, the exact solution u can not be explicitly computed and
needs to be approximated. The direct BURA method provides optimal error
estimates within the class of rational approximations, but fails to inherit the
SPD property of A. The proposed product BURA method gives rise to ℓ2
error of lower order, but on the other hand it inherits the SPD property, the
relative error ratio (16) is robust with respect to both α and k, and it can be
well-approximated provided we have an a priori information on the smallest
eigenvalue of A and its corresponding eigenvector. Due to the application of a
direct MATLAB solver for the systems of linear equations that arise from (10)
and the usage of double precision arithmetic, the numerical derivation of the
BURA solution uα,k becomes more and more challenging with the increment
of k and α. Among all investigated reformulations of (10), the one in (15)
proves to be computationally the most stable one.

For the case α > 2 the above analysis is non-applicable. In [12] the author
proved that α − ⌊α⌋ of the poles and zeros of rα,k are always negative and
interlacing. This allowed us to conclude that for α ∈ (1, 2) the remaining zero
ζ1 and pole d1 are positive real numbers. When α > 2 complex poles and
zeros appear, therefore (9) does not hold true, respectively the formula (10)
becomes more complicated. We leave this case for future work.
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