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Abstract

In this research paper, we propose two accurate and efficient techniques
for solving nonlinear Volterra integral equations. One proposed techniques
based on the expansion of unknown function into a series of the bases func-
tions of Chebyshev wavelets of the second kind, whereas second technique is
based on the expansion of the bases function of Haar wavelets. To illustrate
the simplicity, accuracy and efficacy of both the techniques, some numerical
examples have been performed.
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1. Introduction

Integral equations are fundamental tools for mathematical modeling in
both pure and applied numerical analysis, with broad applications across var-
ious fields. They play a key role in modeling physical, biological, and chemical
phenomena, as well as in scientific and engineering disciplines like astrophysics.
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In physics, they model electromagnetic wave propagation and quantum scat-
tering. In engineering, they are used for structural analysis, signal processing,
and control systems design. In biology, integral equations describe population
dynamics and disease spread. They are also applied in finance for option pric-
ing and risk assessment, in acoustics for sound propagation and noise control,
in environmental science for pollution dispersion modeling, and in medical
imaging for tomography and optical imaging. These equations are essential
for solving problems where the current state depends on past influences or
spans a range of values.

In this paper, the authors present a direct method for solving integral
equations, applicable to both continuous and discontinuous solutions, by uti-
lizing the Chebyshev wavelet basis in Galerkin equations. Furthermore, they
introduce an approach for solving Volterra-type integral equations that lever-
ages the operational matrix of integration (OMI) for Chebyshev wavelets, as
discussed in [I]. A numerical algorithm employing both Chebyshev wavelet
and Haar wavelet has been developed to solve stochastic Ito Volterra integral
equations in [2, B]. A second Chebyshev wavelet method has been discussed
for solving Fredholm and Volterra integral equations in [4]. Additionally, the
product operational matrix and operational matrix of integration have been
derived. The Haar wavelet introduced in [5] are quite frequently used for
solving differential and integral equation. In this paper, the authors have
provided an overview of the literature on Haar wavelets and the solutions of
integral as well as differential equations using these wavelets in [6]. The author
in [9] discussed the application of integral equations with the use of wavelet
methods. An efficient Hermite wavelet method for the numerical solution of
nonlinear Fredholm integral equations has been proposed in[§]. In [7] , a sim-
ple and efficient Haar wavelet method for the numerical solution of nonlinear
first kind Volterra integral equations has been presented. Numerical solution
of second kind Fredholm, Volterra and mixed Volterra integral equations with
the help of legendre multi wavelets and Haar wavelets has been developed in
[10, 12]. In [I1], the authors investigated the use of Bernstein polynomials for
numerically solving nonlinear Volterra, Fredholm, and Hammerstein integral
equations. A spectral collocation method based on Jaccobi wavelets has been
implemented for the numerical solution of Volterra integral equations of third
kind in [13]. The authors in [14] formulated a new computational technique for
solving stochastic Ito Volterra integral equations by using Chebyshev wavelets.
In this research paper, the authors introduced a efficient technique for solving
second kind Fredholm integral equations by using Fibonacci wavelets in [15].
For the investigation of numerical integration, an effective technique has been
presented utilizing the Chebyshev wavelets in[16].
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2. Chebyshev wavelets of the second kind

In the last few decades, wavelets based numerical techniques have been
used extensively for the solution of various problems of science, engineering
and technology. Wavelets are a group of functions generated by dilating and
translating a fundamental function known as the mother wavelet. When the
dilation parameter a and the translation parameter b changes continuously,
they form the following family of continuous wavelets:

Yap(t) = \a|1/2¢(¥), a,beR, a#0. (1)

The second kind wavelets ¢n, m) = v (k,n,m,t) have four arguments; k de-
notes the positive integer, n = 1,2, 3,4, oy 2621 the degree of second kind
Chebyshev polynomials is denoted by m and ¢ represents the normalized time.
It is defined on the interval [0,1) as follows:

UL (2K —2n+ 1), g << gty

0, otherwise,

where

Un(t) = \/zUm(t% (3)

m=20,1,2,3,...., M — 1 and M is a fixed integer. In relation given by is
for orthonormality. Here U,,(t) represents the second kind Chebyshev poly-
nomials of degree m and are orthogonal with respect to the weight function
w(t) = 4/(1 —t?) on the interval [—1,1], and the following recursive formula
has been satisfied:

Up(t) = 1,Ur(t) = 2t, Uppi1(t) = 2tUp(t) — Upp_1(t), m =1,2,3,4, ....

It is noted that in case of Chebyshev wavelets of second kind, the weight
function has to be translated and dilated as wy,(t) = w(2¥t —2n +1). Here we
find out the integral of second kind Chebyshev wavelets functions with £k = 1
and M = 6. For this, the six basis functions in [0, 1] are as follows:



716 I. Singh, Preeti

Y10(z) = %
Yra(e) = E4r - 2),
P 2(z) = 7(161‘ — 16z + 3),

(4)
wm@g:74Mx—ym¥+Mx—®
dqg(x)::;%{256x — 51223 + 33622 — 80z + 5),
¢12(x)::A7:(1024x — 256021 4 230423 — 89622 + 140x — 6).

3. Haar wavelets and its properties

Haar functions consists of an orthogonal set of switched rectangular wave-
forms, each with function potentially having different amplitudes. The Haar
wavelet is a sequence of rescaled square- shaped functions that collectively
forms a wavelet family or basis. The Haar wavelet function h;(x) is defined as
follows:

1, alz<p

[hi(z)={ -1, B<az<vy], (5)
0, elsewhere
k k+05 _ k41 — 9] L
where o = £ - B= ,y="=m=2,and j=0,1,2,3,...,J. The level

of resolutlon is denoted by J. The translation parameter is represented by the
integer £ =0,1,2,...,m — 1. The index i is calculated as i = m +k + 1. The
minimum value of 4 is 2, and the maximum value of i is 2711,

The collocation points are determined as

(1—-0.5)
2M

The operational matrix P, which is 2M x 2M, is calculated as below:

T = 1=1,2,3,...,2M. (4)

Pri(x) = /0 " () da (6)

Poi1i(z) = / P,i(x)dx, n=1,23,... (7)
0
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From (5), we obtain:
r—a, alz<pf
Pia(r)=¢v—z, B<a<y
0, elsewhere.

4. Computational analysis

In this section, we will discuss about the computational and error analysis
of the proposed scheme and perform some numerical experiments.

Example 1: Consider the nonlinear integral equation

2t 1 t
€ = / yz(s) ds,
2 0

with the initial condition y(0) = 1. The exact solution to the problem is:

y(t) = e’

First, substitute 32(s) = w(s), then the integral equation becomes

Assume that

2k—1 pr—1
w(s) = Z Z Cn,m Pn,m () (8)
n=1 m=0
From (7), we obtain
02t 1 ¢ (2 M1
5 :/0 Z Cm Pnm(s) | ds (9)
n=1 m=0
This implies
2k=1 pr—1 t th _1
SN eam / Onm(s) ds = ——. (10)
n=1 m=0 0

After discretizing (10), we obtain a system of linear equations that can be
solved using any classical method. Solving this system of equations provides
the wavelet coefficients. For £k = 1 and M = 8, the wavelet coefficients are:
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c10 = 2.7151619253,
c1.1 = 13080719230,
c1.9 = 0.3204236219,
c1.3 = 0.0527492111,
c1.4 = 0.0065386655,
c1,5 = 0.0006492345,
c1.6 = 0.0000532401,
c1.7 = 0.0000034075.

Substituting the values of wavelet coefficients into (8), we obtain the solution
w(s). The required solution of the given problem is obtained from the relation

Y2 (s) = w(s).

S Exact Solutions | Chebyshev wavelet | Haar wavelet
solutions solutions

0.0625 | 1.0644944589 1.0644945731 1.0320792724
0.1875 | 1.2062302494 1.2062302051 1.2286399260
0.3125 | 1.3668379411 1.3668379633 1.3403284204
0.4375 | 1.5488302986 1.5488302817 1.5647857417
0.5625 | 1.7550546569 1.7550546766 1.7326794342
0.6875 | 1.9887374695 1.9887374333 1.9991750723
0.8125 | 2.2535347872 2.2535349036 2.2338391938
0.9375 | 2.5535894580 2.5535886057 2.5591332753

TABLE 1. Comparison of numerical solutions of Example 1.

s Absolute Errors | Absolute Errors
Chebyshev Haar
0.0625 | 1.1426 x 10~ 7 3.2415 x 1072
0.1875 | 4.4250 x 1078 2.2410 x 1072
0.3125 | 2.2225 x 1078 2.6510 x 102
0.4375 | 1.6887 x 1078 1.5955 x 1072
0.5625 | 1.9649 x 10~8 2.2375 x 1072
0.6875 | 3.6241 x 1078 1.0438 x 1072
0.8125 | 1.1641 x 10~ 7 1.9696 x 102
0.9375 | 8.5226 x 10~ 7 5.5438 x 1073

TABLE 2. Comparison of absolute errors of Example 1.

Table 1 shows the comparison of exact solutions and solutions obtained

with the help of Chebyshev wavelets and Haar wavelets.

Table 2 shows
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Example 1

2.6

Chebyshev Wavelets
2.41| — @ — Haar Wavelets

Ficure 1. Comparison of Chebyshev Wavelets and Haar Wavelets

the comparison of absolute errors obtained by Chebyshev wavelets and Haar
wavelets. Figure 1 shows the comparison of numerical results obtained by
Chebyshev wavelets and Haar wavelets of Example 1.

Example 2: Consider the nonlinear integral equation

et—1:/OtJy(T)ds,

with the initial condition y(0) = 1. The exact solution to the problem is:

y(s) = e,

Table 3 shows the comparison of exact solutions and solutions obtained
with the help of Chebyshev wavelets and Haar wavelets. Table 4 shows
the comparison of absolute errors obtained by Chebyshev wavelets and Haar
wavelets. Figure 2 shows the comparison of numerical results obtained by
Chebyshev wavelets and Haar wavelets of Example 2.

Example 3: Consider the nonlinear integral equation

t2 t
5 :/ VeosThy(s)ds,
0
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S Exact Solutions | Chebyshev wavelet | Haar wavelet
solutions solutions

0.0625 | 1.1331484530 1.1331484543 1.0648410191
0.1875 | 1.4549914146 1.4549914139 1.5273531660
0.3125 | 1.8682459574 1.8682459578 1.7791872019
0.4375 | 2.3988752939 2.3988752935 2.4901343595
0.5625 | 3.0802168489 3.0802168495 2.9638162680
0.6875 | 3.9550767229 3.9550767215 4.0697059666
0.8125 | 5.0784190371 5.0784190428 4.9257623566
0.9375 | 6.5208191203 6.5208190681 6.6639815624

TABLE 3. Comparison of numerical solutions of Example 2.

s Absolute Errors | Absolute Errors
Chebyshev Haar
0.0625 | 1.3290 x 10~? | 6.8307 x 102
0.1875 | 6.5331 x 10710 | 7.2362 x 102
0.3125 | 4.1634 x 10710 | 8.9059 x 102
0.4375 | 4.0128 x 10710 | 9.1259 x 102
0.5625 | 5.9198 x 10710 | 1.1640 x 107!
0.6875 | 1.3840 x 1072 | 1.1463 x 107!
0.8125 | 5.6315 x 1072 | 1.5266 x 1071
0.9375 | 5.2214 x 1078 | 1.4316 x 1071

TABLE 4. Comparison of absolute errors of Example 2.

with the initial condition y(0) = 1. The exact solution to the problem is:

y(s) = cos(s?).

S Exact Solutions | Chebyshev wavelet | Haar wavelet
solutions solutions

0.0625 | 0.9999923706 0.9999923706 0.9999995231
0.1875 | 0.9993820826 0.9993820826 0.9988553324
0.3125 | 0.9952354167 0.9952354167 0.9968731023
0.4375 | 0.9817376814 0.9817376814 0.9759570850
0.5625 | 0.9503597595 0.9503597595 0.9604377334
0.6875 | 0.8903621651 0.8903621651 0.8695027811
0.8125 | 0.7898964223 0.7898964223 0.8194465684
0.9375 | 0.6379937585 0.6379937585 0.5910176044

TABLE 5. Comparison of numerical solutions of Example 3.
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Example 2
7 \ ‘ :
Chebyshev Wavelets

N i ® — Haar Wavelets

Ficure 2. Comparison of solutions obtained by two Wavelets

S Absolute Errors | Absolute Errors
(Chebyshev) (Haar)
0.0625 0 7.1525 x 107°
0.1875 | 1.1102 x 10716 | 5.2675 x 10~*
0.3125 | 4.4409 x 10716 | 1.6377 x 1073
0.4375 | 8.8818 x 10716 | 5.7806 x 103
0.5625 | 2.4425 x 1071 | 1.0078 x 1072
0.6875 | 3.9968 x 10715 | 2.0859 x 102
0.8125 | 9.1038 x 10~1° | 2.9550 x 1072
0.9375 | 1.6875 x 1071* | 4.6976 x 1072

TABLE 6. Comparison of absolute errors of Example 3.

Example 4: Consider the nonlinear integral equation

t;:/Dt\/Mds,

with the initial condition y(0) = 0. The exact solution of the problem is:
y(s) = s
Substitute

the comparison of exact solutions and solutions obtained with the help of
Chebyshev wavelets and Haar wavelets of Example 4. Table 8 shows the com-
parison of absolute errors obtained by Chebyshev wavelets and Haar wavelets

y(s) = w(s) in the given integral equation. Table 7 shows
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0.6 | == Chebyshev Wavelets ]
—@— Haar Wavelets
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Ficure 3. Comparison of solutions found by two Wavelets

Example 4
50

Chebyshev Wavelets
= @ = Haar Wavelets
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FiGURE 4. Comparison of numerical results obtained by Wavelets

of Example 4. Figure 4 shows the comparison of numerical results obtained
by Chebyshev wavelets and Haar wavelets.
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5. Conclusion

In this study, we have presented two numerical techniques based on the ba-
sis functions of Chebyshev wavelets of the second kind and the Haar wavelets
for solving some special type Volterra integral equations arising in various ap-
plications of sciences and engineering. From the above numerical study, it is
concluded that Chebyshev wavelets of the second kind gives better results in
comparison to Haar wavelets. The numerical results are much closer to the
exact solutions, when number of collocation points may increase.

Acknowledgement: We are grateful to the anonymous reviewers for their
valuable comments which led to the improvement of the manuscript.
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