
International Journal of Applied Mathematics

Volume 38 No. 1 2025, 1–13
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v38i1.1

A NOTE ON THE SECOND ORDER OF

ACCURACY DIFFERENCE SCHEME

FOR THE ELLIPTIC-TELEGRAPH

IDENTIFICATION PROBLEM WITH

DIRICHLET BOUNDARY CONDITION

Ahmad Al-Hammouri 1 , Allaberen Ashyralyev 2,3,4

1 Department of Mathematics, College of Science and Technology

Irbid National University

Irbid, 21110, JORDAN

e-mail: alhammouri.math@gmail.com

2 Department of Mathematics, Bahcesehir University

34353, Istanbul, TURKIYE

3 Peoples’ Friendship University of Russia (RUDN University)

Ul Mikluko Maklaya 6, Moscow 117198, RUSSIAN FEDERATION

4 Institute of Mathematics and Mathematical Modeling

Almaty, 050010, KAZAKHSTAN

e-mail: allaberen.ashyralyev@bau.edu.tr

Received: November 18, 2024 © 2025 Diogenes Co., Sofia



2

Abstract

In the present paper, the second-order of accuracy difference scheme
(DS) for the approximate solution of a source identification problem (SIP)
for the multidimensional elliptic-telegraph equations is constructed. The-
orem on stability estimates for the solution of this DS and second-order
difference derivatives is presented. Numerical results are given for the
solutions of the one-dimensional SIP for the elliptic-telegraph equation.
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1. Introduction

The SIP for partial differential equations is essential in modeling a
wide range of biological, physical, engineering, and sociological processes
(see [1]-[3]). The telegraph equation, in particular, is significant for ad-
dressing key issues like signal analysis and wave propagation. For exam-
ple, the study in [3] focuses on developing, analyzing, and implementing
stable numerical methods for solving second-order hyperbolic equations.
Extensive research has examined both local and nonlocal challenges as-
sociated with hyperbolic-elliptic differential and difference equations (for
a comprehensive overview, see references [4]-[21]).

Studies [4] and [5] thoroughly investigated the stability of local and
nonlocal problems for hyperbolic-elliptic differential equations, introduc-
ing first- and second-order of accurate DSs. These studies also provided
stability estimates for the solution of DSs and both first- and second-
order of difference derivatives.

Additionally, paper [6] examined the mixed elliptic-hyperbolic equa-
tion within a rectangular domain, exploring periodic conditions and a
nonlocal problem proposed by A. A. Desin. This work proved theorems
on the convergence of constructed series within the class of regular so-
lutions and established the stability of these solutions. Similarly, in [7],
the existence of traveling wave solutions for a hyperbolic-elliptic system
of partial differential equations was demonstrated using the geometric
theory of singular perturbations. Reference [19] addressed a linear hyper-
bolic equation with nonlocal integral boundary conditions, establishing
stability conditions under a specific matrix norm.
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The study of space dependent SIPs for elliptic-telegraph differential
equations has drawn significant attention from researchers (see [22]-[25]
and related references).

The main goal of this study is to construct and investigate the second-
order of accuracy stable DS for the approximate solution of the SIP

utt(t, x) + αut(t, x)−
n∑

r=1

(ar(x)ux(t, x))xr
+ δu(t, x)

= p(x) + f(t, x), x = (x1, ..., xn) ∈ Ω, 0 < t < 1,

−utt(t, x)−
n∑

r=1

(ar(x)ux(t, x))xr
+ δu(t, x)

= p(x) + g(t, x), x = (x1, ..., xn) ∈ Ω, −1 < t < 0,
u (t, x) = 0, x ∈ S,−1 ≤ t ≤ 1,
u(0, x) = φ(x), ut(0

+, x) = ut(0
−, x),

u(−1, x) = ψ(x), u(1, x) = ξ(x), x ∈ Ω

(1)

for the multidimensional elliptic-telegraph equations. Here, Ω is the unit
open cube in n− dimensional Euclidean space ℜn with boundaries defined
by 0 < yk < 1, for 1 ≤ k ≤ n, and S is the boundary of Ω = Ω∪S. Assume
that δ > 0 is a suitably large constant, αr(x) ≥ a0 > 0, and f(t, x)(x ∈
Ω, 0 < t < 1), g(t, x)(x ∈ Ω, −1 < t < 0), φ(x), ψ(x), ξ(x)( x ∈ Ω), and
αr(x)(1 ≤ r ≤ n, x ∈ Ω) are sufficiently smooth functions that meet all
the necessary compatibility conditions to guarantee that the SIP (1) has
a smooth solution u(t, x) and p(x).

The second-order of accuracy DS for the approximate solution of
the SIP (1) for the multidimensional elliptic-telegraph equations is con-
structed. Theorem on stability estimates for the solution of this DS and
second-order difference derivatives is established. Numerical results are
presented for the solutions of the one-dimensional SIP for the elliptic-
telegraph equation.

2. Stability of DS

In this section, we study the second-order of accuracy DS in t for the
approximate solution of SIP (1). The discretization of SIP (1) is carried
out in two stages. In the first stage, we introduce the grid spaces

Ωh = {x = xr = h1j1, ..., hnjn, j = (j1, ..., jn) 0 ≤ jr ≤ Nr,

Nrhr = 1, r = 1, ..., n} ,Ωh = Ωh ∩ Ω, Sh = Ωh ∩ S
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and introduce the Hilbert space L2h = L2

(
Ωh

)
of the grid functions

ϕh(x) = {ϕ(h1j1, ..., hnjn)} defined on Ωh equipped with the norm

∥∥ϕh
∥∥
L2h

=

(∑
x∈Ωh

∣∣ϕh (x)
∣∣2 h1...hn)1/2

.

Moreover, we introduce the difference operator Ax
h given by the formula

Ax
hu

h(x) = −
n∑

r=1

(αr(x)u
h
xr
)xr,jr + δuh(x), (2)

where Ax
h is known as self-adjoint and positive-definite operator in L2h,

acting in the space of grid functions uh (x) satisfying the conditions
uh (x) = 0 for all x ∈ Sh. With the help of the difference operator
Ax

h, we arrive at the following SIP

uhtt(t, x) + αuht (t, x) + Ax
hu

h(t, x)
= ph(x) + fh(t, x), x ∈ Ωh, 0 < t < 1,
−uhtt(t, x) + Ax

hu
h(t, x)

= ph(x) + gh(t, x), x ∈ Ωh, −1 < t < 0,
uh(0, x) = φh(x), uht (0

+, x) = uht (0
−, x),

uh(−1, x) = ψh(x), uh(1, x) = ξh(x), x ∈ Ωh.

(3)

In the second stage, we replace SIP (3) with a second-order of accuracy
DS 

uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2
+ α

uh
k+1(x)−uh

k−1(x)

2τ

+1
2
Ax

h

(
uhk+1(x) + uhk−1(x)

)
= ph(x) + fh

k (x), f
h
k (x)

= fh(tk, x), 1 ≤ k ≤ N − 1, x ∈ Ωh,
uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2
+ Ax

hu
h
k(x) = ph(x) + ghk ,

ghk (x) = g(tk, x),−N + 1 ≤ k ≤ −1, x ∈ Ωh,
uh0(x) = φh(x),−3uh0(x) + 4uh1(x)− uh2(x)
= 3uh0(x)− 4uh−1(x) + uh−2(x), u

h
−N(x) = ψh(x),

uhN(x) = ξh(x), x ∈ Ωh.

(4)

Theorem 2.1. Suppose that α ≥ 4,
(
α
2
+ 1
)2 ≥ δ ≥

(
α
2

)2
+ 1.

Then, for the solution
{{
uhk(x)

}N
−N

, ph(x)
}
of problem (4) the following

stability estimates hold:

max
−N≤k≤N

∥uk∥L2h
+
∥∥(Ax

h)
−1 ph

∥∥
L2h

(5)
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≤M1(α, δ)
[∥∥φh

∥∥
L2h

+
∥∥ψh

∥∥
L2h

+
∥∥ξh∥∥

L2h

+ max
−N+1≤k≤−1

∥∥ghk∥∥L2h
+ max

1≤k≤N−1

∥∥fh
k

∥∥
L2h

]
,

max
−N+1≤k≤N−1

∥∥∥∥uhk+1 − 2uhk + uhk−1

τ 2

∥∥∥∥
L2h

+ max
−N+1≤k≤N

∥∥uhk∥∥W 2
2h

(6)

≤M2(α, δ)
[∥∥φh

∥∥
W 2

2h

+
∥∥ψh

∥∥
W 2

2h

+
∥∥ξh∥∥

W 2
2h

+
∥∥gh−1

∥∥
L2h

+
∥∥fh

1

∥∥
L2h

+ max
−N+1≤k≤−2

∥∥∥∥1τ (ghk − ghk−1

)∥∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥∥1τ (fh
k − fh

k−1

)∥∥∥∥
L2h

]
hold, where M1(α, δ),M2(α, δ) do not depend on fh

k , 1 ≤ k ≤ N −
1, ghk , −N + 1 ≤ k ≤ −1, φh(x), ψh(x) and ξh(x).

P r o o f. DS (4) can be written in the abstract form

uk+1−2uk+uk−1

τ2
+ αuk+1−uk−1

2τ
+ 1

2
Auk+1 +

1
2
Auk−1 = p+ fk,

fk = f(tk), 1 ≤ k ≤ N − 1,
uk+1−2uk+uk−1

τ2
+ Auk = p+ gk,

gk = g(tk),−N + 1 ≤ k ≤ −1,
u0 = φ,−3u0 + 4u1 − u2 = 3u0 − 4u−1 + u−2,
u−N = ψ, uN = ξ

(7)

for the approximate solution of the space dependent SIP (3) in a Hilbert
space H = L2h with self-adjoint and positive-definite operator A = Ah

defined by formula (2). Here, fk = fh
k (x) , gk = ghk (x) are given abstract

mesh functions and uk = uhk (x) is unknown abstract mesh function de-
fined on Ωh and p = ph(x) is the element of L2h. Therefore, estimates (5)
and (6) follow from the following Theorem 2 on the stability inequalities
for the solution of DS (7), and the Theorem 3 on the coercivity stability
estimate for the solution of the elliptic difference problem generated by
(2) in L2h. 2

Theorem 2.2. Suppose that φ, ψ, ξ ∈ D(A) and α ≥ 4,
(
α
2
+ 1
)2 ≥

δ ≥
(
α
2

)2
+ 1. Then, for the solution of DS (7), the stability inequalities

max
−N≤k≤N

∥uk∥H +
∥∥A−1p

∥∥
H

(8)

≤M3(α, δ) [∥φ∥H + ∥ψ∥H + ∥ξ∥H
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+ max
−N+1≤k≤−1

∥∥A−1/2gk
∥∥
H
+ max

1≤k≤N−1

∥∥A−1/2fk
∥∥]

H

,

max
−N+1≤k≤N−1

∥∥∥∥uk+1 − 2uk + uk−1

τ 2

∥∥∥∥
H

+ max
−N≤k≤N

∥Auk∥H + ∥p∥H (9)

≤M4(α, δ) [∥Aφ∥H + ∥Aψ∥H + ∥Aξ∥H + ∥g−1∥H + ∥f1∥H

+
−2∑

k=−N+1

∥gk − gk−1∥H +
N−1∑
k=2

∥fk − fk−1∥H

]
hold, where M3(α, δ),M4(α, δ) do not depend on fk, 1 ≤ k ≤ N −
1, gk,−N + 1 ≤ k ≤ −1, φ, ψ and ξ.

Theorem 2.3. [26] For the solution of the elliptic differential prob-
lem {

Ax
hu

h(x) = µh(x), x ∈ Ωh,

uh (x) = 0, x ∈ Sh

the following coercivity inequality holds

n∑
r=1

∥∥uhxrxr

∥∥
L2(Ω)

≤M ||µh||L2(Ω).

Here M does not depend on h and µh.

3. Numerical results

The numerical methods for obtaining the approximate solutions of
partial differential equations play an important role in applied mathe-
matics. In this section, we will use the second-order of accuracy DS
to approximate the solution of a simple test problem. We will apply a
procedure of modified Gauss elimination method to solve the problem.
Finally, the error analysis of second-order of accuracy DS will be given.

The SIP

∂2u(t,x)
∂t2

+ 2∂u(t,x)
∂t

− ∂2u(t,x)
∂x2 = p (x)− sinx,

x ∈ (0, π) , t ∈ (0, 1) ,

−∂2u(t,x)
∂t2

− ∂2u(t,x)
∂x2 + u (t, x) = p (x)− sinx,

x ∈ (0, π) , t ∈ (−1, 0) ,
u (0, x) = sin x, u (−1, x) = e sinx, u (1, x) = e−1 sinx,
x ∈ [0, π] , u (t, 0) = 0, u (t, π) = 0, t ∈ [−1, 1]

(10)
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for the elliptic-telegraph equation with the Dirichlet condition is consid-
ered, where

f(t, x) = − sinx, g(t, x) = − sinx.

The exact solution pair of this problem is

(u (t, x) , p (x)) =
(
e−t sinx, sinx

)
, 0 ≤ x ≤ π,−1 ≤ t ≤ 1.

Here, we denote the set [−1, 1]τ × [0, π]h of all grid points

[−1, 1]τ × [0, π]h = {(tk, xn) : tk = kτ,−N ≤ k ≤ N,

Nτ = 1, xn = nh, 0 ≤ n ≤M,Mh = π} .
The solution of SIP (10) can be written as

u(t, x) = ω(t, x) + q(x), (11)

where q(x) is the solution of the problem

−q′′(x) = p(x), 0 < x < π, q(0) = q(π) = 0 (12)

for the numerical solution of SIP (10), we construct the second-order of
accuracy DS in t

uk+1
n − 2ukn + uk−1

n

τ 2
+ 2

uk+1
n − uk−1

n

2τ

−1
2

(
uk+1
n+1 − 2uk+1

n + uk+1
n−1

h2
+
uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2

)
= pn − sinxn, 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

−u
k+1
n − 2ukn + uk−1

n

τ 2
−
ukn+1 − 2ukn + ukn−1

h2
= pn − sinxn,−N + 1 ≤ k ≤ −1, 1 ≤ n ≤M − 1,
−3u0n + 4u1n − u2n = 3u0n − 4u−1

n + u−2
n , 0 ≤ n ≤M,

u0n = 0, u−N
n = (e− 1) sinxn, u

N
n = (e−1 − 1) sinxn,

0 ≤ n ≤M,uk0 = ukM = 0,−N ≤ k ≤ N,

(13)

where ukn and pn denote the numerical approximations of u(t, x) at (t, x) =
(tk, xn) and p(x) at x = xn, respectively.

The solution of DS (13) can be found in the form

ukn = ωk
n + qn, n = 0, 1, ...,M, k = −N, ..., N.

Using (12), we get

pn =
ω2N+1
n+1 − 2ω2N+1

n + ω2N+1
n−1

h2

−e−1 sinxn+1 − 2 sinxn + sinxn−1

h2
, 1 ≤ n ≤M − 1.
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In the third step, using (11), we get

−qn+1 − 2qn + qn−1

h2
= pn, 1 ≤ n ≤M − 1, q0 = qM = 0.

Now, we will obtain
{{
ωk
n

}N
k=−N

}M

n=0
as solution of nonlocal boundary

value problem

ωk+1
n − 2ωk

n + ωk−1
n

τ 2
+ 2

ωk+1
n − ωk−1

n

2τ

−1
2

(
ωk+1
n+1 − 2ωk+1

n + ωk+1
n−1

h2
+
ωk−1
n+1 − 2ωk−1

n + ωk−1
n−1

h2

)
= pn − sinxn, 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

−ω
k+1
n − 2ωk

n + ωk−1
n

τ 2
−
ωk
n+1 − 2ωk

n + ωk
n−1

h2
= pn − sinxn,−N + 1 ≤ k ≤ −1, 1 ≤ n ≤M − 1,
−3ω0

n + 4ω1
n − ω2

n = 3ω0
n − 4ω−1

n + ω−2
n , 0 ≤ n ≤M,

ω0
n = 0, ω−N

n = (e− 1) sinxn, ω
N
n = (e−1 − 1) sinxn,

0 ≤ n ≤M,ωk
0 = ωk

M = 0,−N ≤ k ≤ N.

(14)

Here, ωn
k denotes the numerical approximation of ω(t, x) at (tk, xn). For

obtaining the solution of DS (14), we can write it in the matrix form as{
Aωn+1 +Bωn + Cωn−1 = Fn, 1 ≤ n ≤M − 1,
ω0 = ωM = 0,

(15)

where A,B,C are (2N + 1)× (2N + 1) square, and Fn, ωs, s = n, n ± 1
are (2N + 1)× 1 column matrices

A = C =



0 0 · 0 0 0 0 0 · 0 0 0
0 0 · 0 0 t 0 t · 0 0 0
0 0 · 0 0 0 t 0 · 0 0 0
· · · · · · · · · · · ·
0 0 · 0 0 0 0 0 · 0 t 0
0 0 · 0 0 0 0 0 · t 0 t
0 0 · 0 0 0 0 0 · 0 0 0
0 b · 0 0 0 0 0 · 0 0 0
· · · · · · · · · · · ·
0 0 · b 0 0 0 0 · 0 0 0
0 0 · 0 b 0 0 0 · 0 0 0
0 0 · 0 0 0 0 0 · 0 0 0


(2N+1)×(2N+1)
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with AN+i,i = b and Ai,N+i−1 = Ai,N+i+1 = t for i = 2, ..., N.

B =



−1 0 · 0 0 1 0 0 · 0 0 0
0 0 · 0 0 d c a · 0 0 0
0 0 · 0 0 0 d c · 0 0 0
· · · · · · · · · · · ·
0 0 · 0 0 0 0 0 · c a 0
0 0 · 0 0 0 0 0 · d c a
0 0 · −1 4 −6 4 −1 · 0 0 0
g j · 0 0 0 0 0 · 0 0 0
· · · · · · · · · · · ·
0 0 · j g 0 0 0 · 0 0 0
0 0 · g j g 0 0 · 0 0 0
0 0 · 0 0 1 0 0 · 0 0 −1


(2N+1)×(2N+1)

,

with BN+i,i = j, BN+i,i−1 = BN+i,i+1 = g, and Bi,N+i−1 = d,Bi,N+i =
c, Bi,N+i+1 = a for i = 2, ..., N.

Fn =



(1− e1) sinxn
− sinxn

·
− sinxn

0
− sinxn

·
− sinxn

(1− e−1) sinxn


(2N+1)×1

, ωs =



ω1
s

ω2
s

·
ωN−1
s

ωN
s

ωN+1
s

·
ω2N
s

ω2N+1
s


(2N+1)×1

Here,

a = 1
τ2

+ 1
τ
+ 1

h2 , b = − 1
h2 , c = − 2

τ2
, t = − 1

2h2 ,
d = 1

τ2
− 1

τ
+ 1

h2 , g = − 1
τ2
, z = 2

τ2
+ 2

h2 .

For the solution of the matrix equation (15), we use the modified Gauss
elimination method. We seek a solution of the matrix equation (15) by
the following form

ωn = αn+1ωn+1 + βn+1, n =M − 1, ..., 1, 0, (16)

where αn (1 ≤ n ≤M − 1) are (2N +1)× (2N +1) square matrices and
βn (1 ≤ n ≤M − 1) are (2N + 1)× 1 column vectors, calculated as αn+1 = −QnA, βn+1 = Qn(DFn − Cβn),

Qn = (B + Cαn)
−1, n = 1, 2, ...,M − 1.
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Here, D and α1 are identity (2N + 1)× (2N + 1) square matrix, and
β1 is (2N+1)×1 column vector with zero elements. Finally, we compute
the error between the exact solution and numerical solution by

∥Eω∥∞ = max
−N≤k≤N,0≤n≤M

∣∣ω (tk, xn)− ωk
n

∣∣ ,
∥Eu∥∞ = max

−N≤k≤N,0≤n≤M

∣∣u (tk, xn)− ukn
∣∣ ,

∥Ep∥∞ = max
−N≤k≤N,0≤n≤M

|p (xn)− pn| ,

where ω (t, x) , u (t, x) , p(x) represent the exact solutions, ωk
n and ukn rep-

resent the numerical solutions at (tk, xn), and pn represent the numerical
solutions at xn. The numerical results are given in the Table 1.

Table 1. Errors

Errors ∥Eω∥∞ ∥Ep∥∞ ∥Eu∥∞
N =M = 10 0.0211 0.0109 0.0029
N =M = 20 0.0054 0.0028 7.5025e− 04
N =M = 40 0.0014 7.2547e− 04 1.9041e− 04
N =M = 80 3.4447e− 04 1.8454e− 04 4.7966e− 05

As it is seen in Table 1, if N and M are doubled, the values of errors
decrease by a factor of approximately 1/4.

4. Conclusion

In the present paper, the absolute stable DS of the second-order of
accuracy DS for the approximate solution of the SIP for the multidimen-
sional elliptic-telegraph differential equation with Dirichlet condition is
constructed. Theorem on stability of this DS is established. Numerical
results are presented for the solutions of the one-dimensional SIP for the
elliptic-telegraph equation.
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