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Abstract

Researchers are becoming increasingly interested in using Fractional
Partial Differential Equation (FPDE) models for physical systems such
as modeling the flow of a gas through porous materials. These models
rely on the fraction of the differentiation α, which needs to be estimated
from empirical data. Experimentation is required in order to generate
empirical data, specifically, distance x from the pressure source and t
the time since the pressure was initially applied to the system which will
generate an output pressure measurement p(x, t). While sampling times
are easy to choose when a sensor is in place, the location of sensors from
the pressure source are typically arbitrarily chosen. This work shows
how to design experiments using a sequential design with a base design
and sequentially adding sampling design points by finding the optimal
sensor locations along x. In this paper, we considered three methods of
optimizations: A-optimality, D-optimality and E-optimality. For the A-
optimality, we minimize the of the sum of the marginal variances of all
the parameters. For the D-optimality we maximize the determinant of
the information matrix. For the E-optimality, we o minimize the largest
eigenvalue of the inverse of the information matrix. To estimate the
parameters, a Bayesian framework is utilized combined with a sequential
design approach to search through the possible locations for the next
sensor in the follow up design. Two simple FPDE parameterizations are
used to illustrate the method with an initial sensor location design of six
sensors and with five additional sensors locations determined sequentially.
The simple examples suggest that the parameter values influence the
location of the next best sensor location.

Math. Subject Classification: 26A33, 34A08, 35R11, 65M15,
65G99

Key Words and Phrases: fractional derivative, Bayesian estima-
tion, optimal experimental design, modeling error

1. Introduction

Fractional Partial Differential Equations (FPDEs) have garnered in-
creasing interest among researchers modeling complex phenomena, such
as flow through porous materials [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. These
equations are particularly valuable because many natural processes are
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not adequately described by classical derivatives, necessitating the use of
fractional calculus. Examples include crowded systems, such as protein
diffusion within cells [11], and diffusion in porous media, where fractional
differential equations often provide more accurate descriptions [12].

Although fractional calculus has a long history, its application across
various fields of science and engineering is relatively recent. For instance,
Ghanam and Boone[9] proposed a new approaches to estimation and hy-
pothesis testing for fractional fluid transport models. Their work focused
on estimating key parameters, such as the fractional derivative param-
eter α, and accounting for measurement error. Once empirical data is
collected, these parameters can be estimated using techniques outlined
in [10]. However, generating such empirical data often requires experi-
mental investigations on the porous materials being studied.

In this article we consider the mathematical model presented in [10]
for which a parameter estimation for the fractional derivative order α
is obtained and apply that to solve an optimization problem related to
design of experiment. In this work, we consider how to place sensors
for observation along the distance from the pressure source axis x using
a follow-up study approach. Figure 1 shows and example of how an
experimental set up may look. Pressure is applied to one end of the
porous material and at specified distances x1, x2, ..., xk sensors are placed
to measure the pressure output at those locations at various times t from
the pressure being applied, denoted p(xi, t). Notice that the choice of
locations of the sensors may or may not be optimal for learning about
the parameters that govern the process. The question posed here is:
How can a follow-up study framework allow for better estimation of the
parameters, specifically the fraction parameter α.

The follow-up approach to design of experiments consist of two parts,
first, a base design is conducted where sensors are placed and initial data
is obtained and the information is used to help determine where the ad-
ditional sensors are placed for the second stage of experimentation, the
follow-up design. The advantage of follow-up studies is that researchers
can place the additional sensors in locations that will allow for the most
information about the parameters to be learned from the data. Experi-
mental Design is a broad field in statistics which is covered well by [13]
and [14]. For this study, a base design with six locations chosen arbi-
trarily, and follow-up designs with 1, 2, 3, 4 and 5 possible new locations
are considered. In Figure 1, the purple sensors reflect the base design
and the green sensors reflect the addition of three sensors once data has
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Figure 1. Example experimental device with pressure input,
sensors at various locations and resulting p(x, t) measurements.
Blue sensors correspond to the base design and the green sen-
sors are the additional sensor as suggested via the follow-up
design.

been collected from the base sensor. These three green sensors are the
follow-up design, in which the locations are chosen to minimize the vol-
ume of the Variance-Covariance matrix of the model parameters. In this
optimization problem, we use three different techniques: A, D and E
optimality and make a comparison across these methods. Each of these
criteria use an information approach, specifically, Fisher’s information.
For more information about these methods we refer the reader to [13]
and [14].

The outline of the paper is as follows: In Section 2, we give the various
definitions of fractional derivatives and some properties related to their
Laplace transforms. In Section 3, we state the mathematical model under
consideration and define the problem under investigation. In Sections 4
and 5, we provide simulated examples the design of experiment optimality
criteria. In Sections 6 and 7, we provide the new results and discussion.

2. Preliminaries

In this section, we give some definitions and preliminaries about frac-
tional calculus. For more reference about fractional calculus, we recom-
mend [15, 16, 17, 18] for the readers.

Riemann-Liouville Fractional Integral of order α for an absolutely
integrable function f(t) is defined by

(0I
α
t f) (t) :=

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t > 0, α > 0, (1)
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when the right hand side exists.

Riemann-Liouville Fractional Derivative of order α > 0 for an
absolutely integrable function f(t) is defined by

(0D
α
t f) (t) =

1

Γ(1− α)

d

dt

∫ t

0

f(τ)

(t− τ)α
dτ, t > 0, 0 < α < 1 (2)

Caputo Fractional Derivative of order α > 0 for a function f(t),
whose first derivative is absolutely integrable, is defined by

(∗0D
α
t f) (t) =

1

Γ(1− α)

∫ t

0

f
′
(τ)

(t− τ)α
dτ, t > 0, 0 < α < 1 (3)

Relationship between Riemann-Liouville and Caputo Fractional
Derivative

(∗0D
α
t f) (t) = 0D

α
t f(t)− f(0+)

t−α

Γ(1− α)

= 0D
α
t

[
f(t)− f(0+)

]
.

(4)

Hilfer Fractional Derivative of order α > 0 and type β for an ab-
solutely integrable function f(t) with respect to t is defined by(

Dα,β
t f

)
(t) =

(
0I

β(1−α)
t

d

dt
I(1−β)(1−α)f

)
(t), (5)

where t > 0, 0 < α < 1, 0 ≤ β ≤ 1.

Laplace transform of fractional derivatives

L[∗0Dα
t f(t); s] : = sf̃(s)− sα−1f(0+), 0 < α ≤ 1, (6)

where

f(0+) : = lim
t→0+

f(t).

L[0Dα
t f(t); s] : = sf̃(s)−

(
0I

1−α
t f

)
(0+), 0 < α ≤ 1, (7)

where(
0I

1−α
t f

)
(0+) : = lim

t→0+

(
0I

1−α
t f

)
(t)

L
[
Dα,β

t f(t); s
]
: = sf̃(s)− sβ(1−α)

[
0I

(1−β)(1−α)f(0+)
]
, (8)

where 0 < α < 1 and(
0I

(1−β)(1−α)
t f

)
(0+) : = lim

t→0+

(
0I

(1−β)(1−α)
t f

)
(t). (9)
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Note:

One can see that the differences in these Laplace transforms are in the

initial data f(0+),
(
0I

1−α
t f

)
(0+), and

(
0I

(1−β)(1−α)
t f

)
(0+).

Lemma. Assume that f(t) is continuous on [0, T ], for some T > 0,
then

lim
t→0+

(0I
α
t f) (t) = 0,

for α > 0.

Proof. Let 0 ≤ t ≤ T , then∣∣∣∣∫ t

0

(t− τ)α−1f(τ)dτ

∣∣∣∣ ≤ ∫ t

0

|t− τ |α−1|f(τ)|dτ

≤ M

∫ t

0

|t− τ |α−1dτ

≤ M.
−(t− τ)α

α
|t0

≤ M

α
tα → 0 as t → 0.

Remarks:

(1) Caputo derivative represents a sort of regularization in the time
domain (origin) for Riemann-Liouville derivative.

(2) Hilfer fractional derivative interpolates between Riemann-Liouville
fractional derivative and Caputo fractional derivative, because if
β = 0 then Hilfer fractional derivative corresponds to Riemann-
Liouville fractional derivative and if β = 1 then Hilfer fractional
derivative corresponds to Caputo fractional derivative.

(3) f(0+) is required to be finite.
(4) The three derivatives are equal if f is continuous on [0, T ] and

f(0+) = 0.

Mittag-Leffler Function

The Mittag-Leffler function is a generalization of the exponential
function

ez =
∞∑
k=0

zk

k!
.

1-parameter Mittag-Leffler Function
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Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0. (10)

2-parameter Mittag-Leffler Function

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (11)

3. Mathematical Model

Time-fractional advection-diffusion systems have become popular in
the literature [19, 20], as they are relevant to applications of transport
through porous media. One issue with using these models is the estima-
tion of α which has been addressed by [10] using a Bayesian approach.
The next step is to determine how experimental designs can improve
the parameter estimation so that all inferences for the fraction of dif-
ferentiation, α, and the experimental error variance σ2 are based on
the optimal amount of experimental information. The time-fractional
advection-diffusion equation is given by [19]:

∂αp

∂tα
=

∂

∂x

(
D
∂p

∂x

)
− U

(
∂p

∂x

)
, t > 0, x > 0. (12)

where ∂αp
∂xα is the Caputo fractional derivative of order α, and D and U

are functions of t and x.

3.1. Models Considered. Model 1
For simplicity we first consider equation (12) with D = 1 and U = 1
and initial condition p(x, 0) = e−cx, (c > 0), and boundary condition is
p(x, t) → 0 as x → ∞. In this case, let c = 1. This example yields the
following linear system,

∂αp

∂tα
=

∂2p

∂x2
− ∂p

∂x
, t > 0, x > 0. (13)

Under this specification and some mile conditions p(x, t) has a closed
form solution and is given by:

p(x, t) = e−x

∞∑
k=0

2tαk

Γ(αk + 1)
. (14)

Model 2
A more complex model is considered which comes from equation (12)
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where D(p) = 1
p
and U(p, px) =

1
p
∂p
∂x
, with initial condition p(x, 0) = e−x,

and boundary condition p(x, t) → 0 as x → ∞. In contrast to Model 1,
this specification also yields a non-linear system:

∂αp

∂tα
=

∂

∂x

(
1

p

∂p

∂x

)
− 1

p

(
∂p

∂x

)2

. (15)

Fortunately, this case has a closed form solution for p(x, t) assuming
some mild conditions.

p(x, t) = e−x

∞∑
k=0

(−tα)k

Γ(αk + 1)
, t > 0, x > 0. (16)

To better understand behavior of each model some solutions are pro-
vided across both x, t and α for both models. Figure 2 shows the behavior
of the fPDE’s solution across various values of α. Panel (a) shows the in-
fluence of α on the solution of Model 1 across x when α = 0.5, 0.6, 0.7, 0.8
at time t = 1.0. Notice that as α increases the pressure is dampened or
compressed towards zero. Furthermore, the value of α has a strong im-
pact on pressure when x = 0. In Panel (b) the pressures is shown across
t for values of α = 0.78, 0.80, 0.82, 0.84. Notice as time increases the
pressure increases showing the delay in the process due to the porosity.
Similarly, for Model 2, Panel (c) the means of the solutions at α across
the same values of x at time t = 1.0 and Panel (d) the pressures is shown
across t for the same values of α as in Panel (b). Notice that as x in-
creases the pressure decreases to zero and the value of α does not seem
to have a large effect on the pressures. Also as t increases the pressure
decreases as well and α does not have a strong impact on the resulting
pressures.

Figure 3 shows the solution across values of x and t when α =
0.82. In Panel (a) the solution of Model 1 is plotted across x for t =
0.1, 0.25, 0.4, 0.55. Here as x increases there is an exponential reduction
in the pressure. Panel (b) plots the solution of Model 1 across t for
x = 0.0, 0.5, 1.0, 1.5. Notice that as t increases the pressure increases
as well. Panel (c) shows the solution of Model 2 plotted across x for
t = 0.1, 0.25, 0.4, 0.55. Again, as x increases the pressure does as well.
Panel (d) shows the solution of Model 2 across t for x = 0.0, 0.5, 1.0, 1.5.
As t increases pressure decreases and the value of x has a dramatic effect
on the pressure.
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(a) (b)

(c) (d)

Figure 2. Plots of Model 1 and Model 2 p(x, t) across various
values of α. Panel (a) shows a plot of Model 1 p(x, t) across
α = 0.5, 0.6, 0.7, 0.8 when t = 1.0. Panel (b) shows a plot of
Model 1 p(x, t) across α = 0.78, 0.80, 0.82, 0.84 when x = 0.1.
Panels (c) and (d) show the analog of Panels (a) and (b) for
Model 2.

3.2. Statistical Model. Here a Bayesian framework is used to estimate
the model parameters, which requires that both a likelihood be specified
as well as prior distributions on the model parameters [21]. Likelihood
is associated with the errors generated by the observation process. Let
ϵ(xi, tj) be the error at location xi at time tj. Since model is interested
in positive pressure, a log-normal error structure will be used. This
error structure multiplicative in nature, unlike many error structures that
are additive. Let Y (xi, tj) where i = 1, ..., nx and j = 1, ..., nt be the
random variable for p(xi, tj) and y(xi, tj) are the actual observed pressure
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(a) (b)

(c) (d)

Figure 3. Plots of Model 1 p(x, t) across x and t when
α = 0.82. Panel (a) shows plots of p(x, t) across x when
t = 0.1, 0.25, 0.4, 0.55. Panel (b) shows plots of p(x, t) across t
when x = 0.0, 0.5, 1.0, 1.5. Panels (c) and (d) show the analog
of Panels (a) and (b) for Model 2.

measurements. For each model the structure is given by:

Model 1: Y (xi, tj) = p(xi, tj)ϵ(xi, tj) =

[
e−xi

∞∑
k=0

2tαkj
Γ(αk + 1)

]
ϵ(xi, tj).

(17)

Model 2: Y (xi, tj) = p(xi, tj)ϵ(xi, tj) =

[
e−xi

∞∑
k=0

(
−tαj

)k
Γ(αk + 1)

]
ϵ(xi, tj),

(18)

where ϵ(xi, tj)
iid∼ LogNormal(1, σ2). In this specification,α and σ2 are

the two parameters to be estimated. In order to obtain a posterior distri-
bution of the parameters, prior distributions must be specified. Here the
prior distribution for α and σ2, π(α, σ2) are specified as α ∼ Beta (α∗, β∗)
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to reflect the prior knowledge that α is bound between 0 and 1 (Recall
that α = 0 implies no differentiation and α = 1 implies no fractional
derivative is needed). Noting that σ2 > 0 a reasonable prior distribution
specification is σ2 ∼ χ2(df). For more on prior distribution and selection,
see [22].

For notation let x be all xi values and t be all the values of tj and
y(x, t) be all the corresponding values of y(xi, tj) observed and p(x, t)
be all the solutions at the corresponding location and time values. The
posterior distribution π (α, σ2|p(x, t), y(x, t)) can be found using Bayes’
Theorem [23]:

π
(
α, σ2|p(x, t), y(x, t)

)
=

π(α, σ2)L(y(x, t)|p(x, t), α, σ2)∫
π(α, σ2)L(y(x, t)|p(x, t), α, σ2)dαdσ2

.

(19)
In this case no analytic solution to π (α, σ2|p(x, t), y(x, t)) exists and
hence numerical methods need to be utilized to make inferences from the
posterior distribution. Sampling from the posterior distribution is a pop-
ular approach and using the posterior samples to make inferences. There
are many choices for the algorithm to sample from the posterior dis-
tribution such as Acceptance Sampling, Metropolis-Hastings Sampling,
Sampling Importance Resampling, Slice Sampling, etc. For more on sam-
pling algorithms see [24], [25], [26].

The posterior predictive distribution will be needed to generate new
pressure values, Ynew associated with a additional sensor being placed
at unobserved location Xnew. These values will be used to augment the
observed data set to determine which sensor location should be added
next. The posterior predictive distribution is given by:

π (Ynew(Xnew, t)|p(x, t), y(x, t), Xnew, t)
=

∫
L (Ynew(Xnew, t)|p(Xnew, t), Xnew, t, α, σ

2)
×π (α, σ2|p(x, t), y(x, t)) dαdσ2.

(20)

Notice that the predictive distribution is a probability distribution
and hence any predictions generated from it are essentially random sam-
ples from this distribution, not simply an estimate of the mean at that
location.

4. Simulated Example

As (3.1) is unfamiliar to many readers suppose α = 0.82 and from
that system pressure data y(x, t) has been observed, with noise, at all
combinations of nx = 31 equally spaced levels of x from 0.01 to 10 and
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(a) (b)

(c) (d)

Figure 4. Simulated example of Model 1 ((3.1)) with no noise
(mean only) (a), α = 0.82 and with noise (mean with noise)
σ = 0.1 (b) and Model 2 ((3.1) with no noise (mean only) (c)
and with noise (mean with noise) σ = 0.1 (d)

nt = 11 equally spaced times t from 0.5 to 1.5 and the noise is multi-
plicative following a LogNormal distribution with mean 1 and σ = 0.1.
Figure 4 shows the true mean surface in panel (a) and the observed data
in panel (b). Similarly, (3.1) is shown in panels (c) and (d). Notice that
this value for σ induces a considerable amount of noise to the system.
Furthermore, the systems produce quite different mean surfaces.

The prior distributions for α and σ were specified as follows for both
Model 1 and Model 2:

α ∼ Beta(3, 3)

σ2 ∼ χ2(1).
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Using the LogNormal likelihood, this prior distribution specification and
Bayes Formula the posterior distribution is:

π (α, σ|y(xi, ti), p(xi, ti)) ∝ αα∗
(1− α)β

∗
(σ2)k/2−1e−σ2/2

× e−
1

2σ2

∑nx
i=1

∑nt
j=1(ln y(xi,tj)−p(xi,tj))

2

× σ−nx−nt

nx∏
i=1

nt∏
j=1

y(xi, tj)
−1 (21)

= α3(1− α)3(σ2)−1/2e−σ2/2

× e−
1

2σ2

∑nx
i=1

∑nt
j=1(ln y(xi,tj)−p(xi,tj))

2

× σ−nx−nt

nx∏
i=1

nt∏
j=1

y(xi, tj)
−1.

To obtain samples from the posterior distribution the Metropolis-
Hastings Markov chain Monte Carlo (MCMC) algorithm was utilized.
Here 1,000 posterior samples were drawn to be used for all inferences.
Note that the sampler was tuned by finding candidate density variances
at produce high acceptance probabilities and all samples from this tuning
process were discarded. To verify convergence to a region of high poste-
rior probability, Trace-plots of the posterior samples were examined.

5. Design Optimality Criteria

To evaluate each additional sensor location an information based ap-
proach is utilized. Many of these criteria are based on Fisher’s Infor-
mation as a theoretical framework for determining the information in a
sample (under certain regularity conditions) is given by [27, 21]:

[I(θ)]i,j = −E

[
∂2

∂θi∂θj
logf(X|θ)|θ

]
, (22)

where θ is the vector of parameters and f is the probability density
associated with the likelihood. In many cases, such as standard linear
models, one can find an explicit form for this analytically using Fisher’s
Information. For example, the model Z ∼ N(Wβ,Σ), the Fisher infor-
mation matrix is given by I(β) = W ′Σ−1W . The variance-covariance of
the least squares estimator for β in this general linear model is given by
Cov(β) = (W ′Σ−1W )

−1
[13]. In particular, notice that Cov(β) = I(β)−1

in this case. In general, if the estimator θ̂ is efficient then it achieves the
Cramér-Rao lower bound which is given by Cov(θ̂) = I(θ)−1. If θ̂ is not

efficient then Cov(θ̂) ≥ I(θ)−1. Hence Cov(θ̂)−1 provides a reasonable
approximation to the Fisher information matrix I(θ) [27].
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Denote the set of all experimental designs (measurement locations)
as Ξ and ξj be an individual design. As there are many different criterion
to evaluate each experimental design this work focuses on three popular
criteria based on Fisher Information are [13, 14, 28]:

• A-optimal: An experimental design, ξ∗ is considered A-optimal if
the trace (I(α, σ|ξ∗))−1 < trace (I(α, σ|ξj))−1 for all ξj ∈ Ξ.

• D-optimal: An experimental design, ξ∗ is considered D-optimal if
the |I(α, σ|ξ∗)−1| < |I(α, σ|ξj)−1| for all ξj ∈ Ξ.

• E-optimal: An experimental design, ξ∗ is considered E-optimal if
the
maxEigenvalue (I(α, σ|ξ∗)−1) < maxEigenvalue (I(α, σ|ξj)−1)
for all ξj ∈ Ξ.

Let Ynew, ξj denote the new outcome vector p(Xnew, t) where Xnew is
defined by experimental design ξj. In this case an analytic for Fisher’s
Information is not available for

π
(
α, σ|y(xi, ti), p(xi, ti), Ynew,ξj , ξj, t

)
.

Here the empirical posterior variance-covariance matrix is a substi-
tuted as a reasonable approximation to Fisher’s information matrix.
Let (α1, σ1), (α2, σ2), ..., (αm, σm) be the m MCMC samples drawn from
π
(
α, σ|y(xi, ti), p(xi, ti), Ynew,ξj , ξj, t

)
. The variance-covariance matrix of

the posterior samples from design ξj is estimated by:

Ĉovj
(
α, σ|y(xi, ti), p(xi, ti), Ynew,ξj , ξjt

)
= 1

m−1

∑m
k=1

[(
αk

σk

)
−
(
ᾱ
σ̄

)][(
αk

σk

)
−
(
ᾱ
σ̄

)]
,

(23)

where ᾱ = 1
m

∑m
k=1 αk and σ̄ = 1

m

∑m
k=1 σk. Hence we can reformulate

the optimality criteria by simply substituting

Ĉovj
(
α, σ|y(xi, ti), p(xi, ti), Ynew,ξj , ξjt

)
for (I(α, σ|ξj))−1 .

Algorithm 1 gives a step-by-step presentation of method proposed
here. Note that in Step 7 the MCMC samples are based on both the
base design and predicted observations for the follow-up design under
consideration.
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Algorithm 1 Algorithm to determine A, D and E optimal designs.

1: Set prior distribution parameters for α and σ.
2: Set base design sampling locations x and sampling times t and define

the candidate locations Ξ where Ξ ∩ x = ∅.
3: Conduct the experiment using the base design and taking measure-

ments y(x, t).
4: Obtain MCMC samples for α and σ
5: for j ∈ 1 to |Ξ| do
6: for ξj ∈ Ξ do
7: Sample Ynew,ξj from
8: π (Ynew(Xnew, t)|p(x, t), y(x, t), Xnew, ξj, t) using MCMC samples

from step 4.
9: Obtain MCMC samples for α and σ from

π
(
α, σ2|p(x, t), y(x, t), Ynew,ξj , Xnew, ξj, t

)
.

10: Calculate Cj = Ĉovj
(
α, σ|y(xi, ti), p(xi, ti), Ynew,ξj , ξjt

)
.

11: Calculate and store Aj = tr(Cj), Dj = |Cj| and Ej =
maxEigen (Cj).

12: end for
13: Examine Aj, Dj and Ej to determine the optimal design ξj for

each criteria.
14: Find x∗

new = maxxnewq (Cj).
15: Update x = x∗

new ∪ x.
16: Update Ξ = Ξ \ x.
17: end for

Note that in Step 5 in Algorithm 1 there may be a large number of
design points. Suppose there are Λ possible measurement locations and
λB are chosen for the base design and λF will be chosen for follow-up
design points, then λF = Λ−λB possible follow-up designs exist. As this
number is typically low in one dimension it could be quite large in higher
dimensions. At each sequential stage the number of follow-up design
points decreases by one.

6. Results for Design of Experiments

To illustrate the outcome associated with this experimental design
technique a simulated dataset using α = 0.82 and σ = 0.1 were created
for both Model 1 and Model 2. For both models the base design points
were x = {0.2, 1.0, 2.0, 5.0, 7.0, 10.0} at which the initial pressures were
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collected. The sequential algorithm was then applied to the dataset for
five sequentially added design points from all candidate set Ξ0 = {0.2i :
i = 1, 2, ...50} with the base design points removed Ξ = Ξ0 \ x. The
algorithm was applied for A, D and E optimality criterion.

The MCMC sampler is programmed in MATLAB 2024a. In this ex-
ample there are 44 follow-up candidates at the start and since we are
adding five follow-up points to the design this results in 44 + 43 + 42 +
41 + 40 = 210 follow-up combinations to be evaluated. To explore all
210 sequential candidate design combinations, computation took approx-
imately 190 seconds using an Intel Core i5 Quad-Core processor at 3.8
GHz and 32GB of RAM. MCMC diagnostics such as trace-plots and
ACF plots were examined throughout the process, which showed MCMC
sampler converged to the region of high posterior density with high ac-
ceptance probability.

The results for Model 1 are presented in Figure 5 which shows the
underlying process as the blue curve with the base design are blue vertical
dashed lines and the follow up design points denoted with vertical red
lines. Note that the vertical red lines have step and location denote at the
top. In Panel (a) shows the results for A-optimality with x = 7.1 being
chosen first in the area of low pressure. The second location x = 3 is in
the region of higher pressure, followed by the third location at x = 2.2 at
an even higher pressure area. The fourth location is at x = 4.2 near the
lower pressure region and finally the fifth location at x = 1.4 which is in
the area of highest pressure. Panel (b) shows the results for D-optimality.
Notice that the first three locations are near to each other in a region
of low pressure at x = 3.2, 2.6 and 2.2 in that order. The remaining
two locations are at x = 8.8 and x = 8.0 which are both in areas of
low pressure. This agrees with general observations that D optimality
tends to push points to the extremes of the domain. Panel (c) shows the
results for E-optimality which has the first additional location at x = 7.2
in the area of low pressure followed by x = 3.2 and x = 2.2 all in the
region of low probability. The fourth location at x = 4.2 in area where
the pressure is approaching zero. The final location is at x = 8 in the
region of low pressure.
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(a) (b) (c)

Figure 5. Follow-up design locations (red vertical lines) for
Model 1 where α = 0.82 and σ = 0.1 with five sequentially
added locations for A optimality (a), D optimality (b) and E
optimality (c) criteria. Base design is 0.2, 1.0, 2.0, 5.0, 7.0, and
10.0. Here t = 1 for visualization purposes.

The results for Model 2 are presented in Figure 6 in the same manner
as for Model 1. One interesting item that can be seen immediately is
that the results for A (panel a) and E (panel c) optimal are identical
with follow up locations at x = 1.6, 3.2, 2.4, 1.8, 8.0 in that order. This is
in contrast to Model 1 where the A and E results were different. Further
note that the added points for A and E tend to be where the function is
above zero with one point in the region where the function is near zero.
For the D optimality criteria (panel b) three points are in the region
where the function is near zero and two points are in the region above
zero. Of interest is the order. First x = 3.6 is selected which is in a
region above zero, followed by x = 7.4 in a region where the function is
near 0, then x = 2.8 is selected which is in a region where the function
is above zero, next x = 6.6 is selected in region near zero and finally
x = 5.4 which is in a region near zero. For this example, D optimality
seems to like to spread the points between the regions above zero and
regions near zero.
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(a) (b) (c)

Figure 6. Follow-up design locations (red vertical lines) for
Model 2 where α = 0.82 and σ = 0.1 with five sequentially
added locations for A optimality (a), D optimality (b) and E
optimality (c) criteria. Base design is 0.2, 1.0, 2.0, 5.0, 7.0, and
10.0. Here t = 1 for visualization purposes.

The above example considered only when α = 0.82, however it showed
some interesting patterns in that the A and E optimality conditions pro-
duced identical results for Model 2. By expanding the values of α one
can see if this pattern persists or if other interesting patterns emerge.
Table 6 shows the result of a simulation study where α is varied across
the values 0.3, 0.4, 0.5, 0.6, 0.7 when σ = 0.01 for each of the optimality
criteria. For each model and α combination, one dataset is generated on
the base design at x = 0.2, 1.0, 2.0, 5.0, 7.0, and 10.0 and then all three
optimality criteria are applied to the dataset to ensure there is no addi-
tional variability due to the initial dataset. One item to notice directly
is that for Model 2 both A and E optimality criteria produce the exact
same additional design points in the same order. Even for Model 1 when
values of α are low both A and E produce quite similar results. When
α = 0.7 the results between A and D differ slightly at Steps 4 and 5.
However, for D optimality there doesn’t seem to be as clear of a pattern.
This may be due to the fact that the information matrix is relatively
orthogonal and α is the dominant term in the diagonal and hence dom-
inant in terms of eigenvalues. This would explain this phenomenon. A
large scale sensitivity study could be conducted to see when this pattern
is present. However, this is beyond the scope of this study.
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Table 1. Selected follow-up designs for the A, D, and E cri-
teria on Models 1 and 2. Base design is 0.2, 1.0, 2.0, 5.0, 7.0,
and 10.0. Here is varied across α = 0.3, 0.4, 0.5, 0.6, 0.7 and
σ = 0.01.

Model Criteria α Step 1 Step 2 Step 3 Step 4 Step 5
Model 1 A 0.3 7.2 3.0 2.2 4.2 1.6

0.4 3.6 3.0 2.2 4.4 1.6
0.5 7.2 3.0 2.2 2.8 3.8
0.6 7.8 3.0 2.2 4.2 6.4
0.7 1.8 3.4 9.0 4.2 6.4

D 0.3 3.2 2.6 2.2 8.8 8.0
0.4 3.6 7.2 9.0 6.4 5.4
0.5 3.2 9.0 7.4 4.0 4.8
0.6 6.8 7.6 2.8 8.8 7.4
0.7 8.0 5.4 9.2 3.8 4.6

E 0.3 7.2 3.0 2.2 4.2 1.6
0.4 3.6 3.0 2.2 4.4 1.6
0.5 7.2 3.0 2.2 2.8 3.8
0.6 7.8 3.0 2.2 4.2 6.4
0.7 1.8 3.4 2.4 4.4 1.2

Model 2 A 0.3 7.8 2.8 6.8 5.2 3.4
0.4 4.8 2.8 2.6 3.0 7.6
0.5 7.4 1.8 6.8 8.6 3.4
0.6 7.8 2.8 6.8 2.2 7.4
0.7 8.6 2.8 6.8 6.4 3.4

D 0.3 4.8 1.8 0.6 6.0 3.4
0.4 6.4 2.8 8.6 8.8 0.6
0.5 7.4 6.0 8.2 5.8 3.8
0.6 4.8 1.2 8.0 3.2 5.4
0.7 2.2 4.4 7.2 6.6 9.8

E 0.3 7.8 2.8 6.8 5.2 3.4
0.4 4.8 2.8 2.6 3.0 7.6
0.5 7.4 1.8 6.8 8.6 3.4
0.6 7.8 2.8 6.8 2.2 7.4
0.7 8.6 2.8 6.8 6.4 3.4
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7. Discussion

This study shows how to use MCMC techniques to sequentially place
new experimental measurement (sensor) locations for FPDEs. First con-
sidering a specific example where the fractional derivative parameter
α = 0.82 with two different variances. For a more general exploration
α = 0.3, 0.4, 0.5, 0.6 and 0.7 is considered with four and five additional
measurement locations. In the limited cases considered here for Model
2 both the A and E criteria produced identical results indicating further
study should be performed.

The work here was performed on simpler models where the analytic
solutions could be obtained. More complex models and models with
larger parameter spaces should be included in future work where numeric
solvers need to be employed to solve such complex fractional differential
equations and systems. Determining the accuracy of the numeric solver
and its impact on inferences should be examined to ensure that the choice
of numeric solver does not unduly influence any parameter inferences or
predictive distributions.

Additional real world applications of fractional calculus and differen-
tial equations where Bayesian methods and estimation could prove useful
should be considered. These range from viscoelastic diffusion in complex
fluids [30], anomalous diffusion [31], fractional order control problems
[32], biological systems [33], and many more [34]. In addition, inverse
problems should be considered as they are frequently encountered by
researchers and practitioners. For example, one might observe a pres-
sure field and want to know what where the inputs that generated that
field. While this is challenging, it may allow for several fruitful lines
of research. Such as what are the best sensor locations on the output
pressure to determine the associated pressure inputs.
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