DOI: 10.12732/ijam.v38i1.4
PERM-GRAPH OF FINITE GROUPS
Bilal N. Al-Hasanat 1, Ibrahim A. Jawarneh 2
Department of Mathematics
Al Hussein Bin Talal University Maan
JORDAN
Abstract. Let G be a finite group and K and H be two subgroups of G. Then K permutes with H if and only if KH = HK. The Perm-graph of a finite
group G is the graph Γ_G whose vertices set is the set of all subgroups of G, and two distinct vertices H_1 and H_2 are adjacent if and only if they
are permute. In this article we will introduce the Perm-graph of finite groups, which is a new graph representation of finite groups. Then we
discuss some properties of such graph in order to show how it detects the properties of the group itself.
How
to cite this paper?
DOI: 10.12732/ijam.v38i1.4
Source: International Journal of
Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 1
References
[1] A.V. Kelarev and S.J. Quinn, A combinatorial
property and power graphs of groups, Contributions to General Algebra, 12,
No 58 (2000), 36.
[2] A.R. Moghaddamfar, S. Rahbariyan, and W.J. Shi,
Certain properties of the power graph associated with a finite group,
Journal of Algebra and its Applications, 13, No 7 (2014), Art. 1450040.
[3] Y. Segev, On finite homomorphic images of the multiplicative group of a division algebra, Ann. of Math., 149 (1999), 219251.
[4] Y. Segev and G. Seitz, Anisotropic groups of type
an and the commuting graph of finite simple groups, Pacific J. Math., 202
(2002), 125225.
[5] B.N. Al-Hasanat and A.S. Alhasanat, Order graph: A
new representation of finite groups, International Journal of Mathematics
and Computer Science, 14 (2019), 809-819.
[6] B.N. Al-Hasanat, A.F. Al-Dababseh, K.A. Al-Sharo
and B.R. Al-Shuraifeen, On the direct product of nearly s-permutable subgroups,
International Journal of Applied Mathematics, 35, No 2 (2022), 307315;
http://dx.doi.org/10.12732/ijam.v35i2.9
[7] K. Iwasawa, Uber die endlichen Gruppen und die
Verbande ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I, 4 (1941),
171199.
[8] R. Dedekind, Uber gruppen, deren sammtliche teiler normalteiler sind, Math. Ann., 48 (1897), 548561.
[9] G. Chartrand, Introductory Graph Theory, Courier Corporation (1977).
[10] B.N. Al-Hasanat, A.H. Alkasasbeh, I.A. Jawarneh,
K.A. Al-Sharo, and R.S. Al-Gounmeein, A-subgroups and A-groups,
Applied Mathematics & Information Sciences, Accepted, 2024.
o Home
o Contents
(c) 2025, Diogenes Co, Ltd.; https://www.diogenes.bg/ijam/