DOI: 10.12732/ijam.v38i1.6
REVISITING FINITE DIFFERENCE
SOLUTIONS FOR HEAT-TYPE
EQUATIONS. PART II. ADVECTIVE TRANSFER
G. Garrido 1, J. L. G. Pestana 2
1 Departamento de Informatica
Universidad de Jaen
Campus Las Lagunillas, 23071 Jaen, SPAIN
2 Departamento de Fısica
Universidad de Jaen
Campus Las Lagunillas, 23071 Jaen, SPAIN
Abstract. In this second paper of a series, we revisit all major systematic uncertainties that affect a complete and unbiased sample of eleven finite
difference schemes for advection-like equations. In order to provide the coherent picture, unlike the existing way, we use as the key tenets both the
reverse Taylor’s analysis and the discrete Fourier’s analysis, as well as the monotonicity analysis. For every type of scheme, their theoretical
uncertainties are examined. A detailed graphical investigation is also provided and used to give a physical reinterpretation of the Courant-
Friedrichs-Lewy condition. We find that no scheme considered in this study resolves the smaller length scales well. Furthermore, we present
several numerical experiments on an equal footing corroborating our demonstrations and proving to what degree the accuracy of each scheme
is impaired by the discontinuities in the data. A comparison with each other is made as well. We definitively establish that the ingenious Lax-
Wendroff scheme is preferred by experiments.
How
to cite this paper?
DOI: 10.12732/ijam.v38i1.6
Source: International Journal of
Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 1
References
[1] P. Sagaut, V. K. Suman,
P. Sundaram, M. K. Rajpoot, Y. G. Bhumkar, S. Sengupta, A. Sengupta, T. K.
Sengupta, Global spectral analysis:
Review of numerical methods, Computers and Fluids, 261 (2023), 105915;
doi:10.1016/j.compfluid.2023.105915
[2] G. Garrido, J. L. G. Pestana, Revisiting finite
difference solutions for heat-type equations. Part I. Diffusive transfer,
International
Journal of Applied Mathematics, 37(6) (2024), 649-698; doi:10.12732/ijam.v37i6.6
[3] C. W. Hirt, Heuristic stability theory for
finite-difference equations, Journal of Computational Physics, 2(4) (1968),
339-355;
doi:10.1016/0021-9991(68)90041-7
[4] J. von Neumann, R. D. Richtmyer, On the Numerical
Solution of Partial Differential Equations of Parabolic Type, In: Los Alamos
Technical Reports, LA–657
(1947).
[5] S. K. Godunov, Finite difference method for
numerical computation of discontinuous solutions of the equations of fluid
dynamics,
Matematiceskij Sbornik, 47(89) (1959), 271-306.
[6] L. F. Richardson, The approximate arithmetical
solution by finite differences of physical problems involving differential
equations,
with an application to the stresses in a masonry dam, Philosophical
Transactions of the Royal Society of London, Series A, 210 (1910),
307-357; doi:10.1098/rsta.1911.0009
[7] R. Courant, K. Friedrichs, H. Lewy, Uber die
partiellen Differenzengleichungen der mathematischen Physik, Mathematische
Annalen,
100 (1928), 32-74; doi:10.1147/rd.112.0215
[8] E. Schmidt, Uber die Anwendung der
Differenzenrechnung auf technische Anheiz- und Abkuhlungsprobleme, Beitrage zur
Technischen
Mechanik und Technischen Physik: August Foppl zum Siebzigsten Geburtstag am 25.
Januar 1924, (1924), 179-189;
doi:10.1007/978-3-642-51983-3_19
[9] J. Crank, P. Nicolson, A practical method for
numerical evaluation of solutions of partial differential equations of the
heat-conduction type,
Mathematical Proceedings of the Cambridge Philosophical Society, 43 (1947),
50-67; doi:10.1017/S0305004100023197
[10] L. H. Thomas, Elliptic Problems in Linear
Difference Equations over a Network, Watson Sci. Comput. Lab. Rept., Columbia
University (1949).
[11] P. Laasonen, Uber eine Methode zur Losung der Warmeleitungs-gleichung,
Acta Mathematica, 81 (1949), 309-317;
doi:10.1007/BF02395025
[12] R. Courant, E. Isaacson, M. Rees, On the solution
of nonlinear hyperbolic differential equations by finite differences,
Communications
on Pure and Applied Mathematics, 5 (1952), 243-255; doi:10.1002/cpa.3160050303
[13] P. D. Lax, Weak solutions of nonlinear hyperbolic
equations and their numerical computation, Communications on Pure and Applied
Mathematics, 7 (1954), 159-193; doi:10.1002/cpa.3160070112
[14] P. D. Lax, R. D. Richtmyer, Survey of the
stability of linear finite difference equations, Communications on Pure and
Applied Mathematics,
9 (1956), 267-293; doi:10.1002/cpa.3160090206
[15] B. Wendroff, Finite difference approximations to
solutions of partial differential equations, New York University ProQuest
Dissertations
Publishing (1958), 6102619.
[16] P. D. Lax, B. Wendroff, Systems of conservation
laws, Communications on Pure and Applied Mathematics, 13, (1960), 217-237;
doi:10.1002/cpa.3160130205
[17] C. R. Molenkamp, Accuracy of Finite-Difference
Methods Applied to the Advection Equation, Journal of Applied Meteorology,
7(2) (1967), 160-167; doi:10.1175/1520-0450(1968)007<0160:AOFDMA>2.0.CO;2
[18] A. Lerat, Une classe de schemas aux differences
implicites pour les systemes hyperboliques de lois de conservation, Comptes
Rendus
Acad. Sc. Paris, Ser. A 288 (1979), 1033-1036.
o Home
o Contents
(c) 2025, Diogenes Co, Ltd.; https://www.diogenes.bg/ijam/