IJAM: Volume 38, No. 1 (2025)

DOI: 10.12732/ijam.v38i1.6

REVISITING FINITE DIFFERENCE

SOLUTIONS FOR HEAT-TYPE

EQUATIONS. PART II. ADVECTIVE TRANSFER

 

G. Garrido 1, J. L. G. Pestana 2

 

1 Departamento de Informatica

Universidad de Jaen

Campus Las Lagunillas, 23071 Jaen, SPAIN

2 Departamento de Fısica

Universidad de Jaen

Campus Las Lagunillas, 23071 Jaen, SPAIN

 

Abstract.  In this second paper of a series, we revisit all major systematic uncertainties that affect a complete and unbiased sample of eleven finite

difference schemes for advection-like equations. In order to provide the coherent picture, unlike the existing way, we use as the key tenets both the

reverse Taylors analysis and the discrete Fouriers analysis, as well as the monotonicity analysis. For every type of scheme, their theoretical

uncertainties are examined. A detailed graphical investigation is also provided and used to give a physical reinterpretation of the Courant-

Friedrichs-Lewy condition. We find that no scheme considered in this study resolves the smaller length scales well. Furthermore, we present

several numerical experiments on an equal footing corroborating our demonstrations and proving to what degree the accuracy of each scheme

is impaired by the discontinuities in the data. A comparison with each other is made as well. We definitively establish that the ingenious Lax-

Wendroff scheme is preferred by experiments.

 

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v38i1.6
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 1

References

[1] P. Sagaut, V. K. Suman, P. Sundaram, M. K. Rajpoot, Y. G. Bhumkar, S. Sengupta, A. Sengupta, T. K. Sengupta, Global spectral analysis:
Review of numerical methods, Computers and Fluids, 261 (2023), 105915; doi:10.1016/j.compfluid.2023.105915

[2] G. Garrido, J. L. G. Pestana, Revisiting finite difference solutions for heat-type equations. Part I. Diffusive transfer, International
Journal of Applied Mathematics, 37(6) (2024), 649-698; doi:10.12732/ijam.v37i6.6

[3] C. W. Hirt, Heuristic stability theory for finite-difference equations, Journal of Computational Physics, 2(4) (1968), 339-355;
doi:10.1016/0021-9991(68)90041-7

[4] J. von Neumann, R. D. Richtmyer, On the Numerical Solution of Partial Differential Equations of Parabolic Type, In: Los Alamos
Technical Reports, LA
657 (1947).

[5] S. K. Godunov, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics,
Matematiceskij Sbornik, 47(89) (1959), 271-306.

[6] L. F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving differential equations,
with an application to the stresses in a masonry dam, Philosophical Transactions of the Royal Society of London, Series A, 210 (1910),
307-357; doi:10.1098/rsta.1911.0009

[7] R. Courant, K. Friedrichs, H. Lewy, Uber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen,
100 (1928), 32-74; doi:10.1147/rd.112.0215

[8] E. Schmidt, Uber die Anwendung der Differenzenrechnung auf technische Anheiz- und Abkuhlungsprobleme, Beitrage zur Technischen
Mechanik und Technischen Physik: August Foppl zum Siebzigsten Geburtstag am 25. Januar 1924, (1924), 179-189;
doi:10.1007/978-3-642-51983-3_19

[9] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,
Mathematical Proceedings of the Cambridge Philosophical Society, 43 (1947), 50-67; doi:10.1017/S0305004100023197

[10] L. H. Thomas, Elliptic Problems in Linear Difference Equations over a Network, Watson Sci. Comput. Lab. Rept., Columbia
University (1949).

[11] P. Laasonen, Uber eine Methode zur Losung der Warmeleitungs-gleichung, Acta Mathematica, 81 (1949), 309-317;
doi:10.1007/BF02395025

[12] R. Courant, E. Isaacson, M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Communications
on Pure and Applied Mathematics, 5 (1952), 243-255; doi:10.1002/cpa.3160050303

[13] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on Pure and Applied
Mathematics, 7 (1954), 159-193; doi:10.1002/cpa.3160070112

[14] P. D. Lax, R. D. Richtmyer, Survey of the stability of linear finite difference equations, Communications on Pure and Applied Mathematics,
9 (1956), 267-293; doi:10.1002/cpa.3160090206

[15] B. Wendroff, Finite difference approximations to solutions of partial differential equations, New York University ProQuest Dissertations
Publishing (1958), 6102619.

[16] P. D. Lax, B. Wendroff, Systems of conservation laws, Communications on Pure and Applied Mathematics, 13, (1960), 217-237;
doi:10.1002/cpa.3160130205

[17] C. R. Molenkamp, Accuracy of Finite-Difference Methods Applied to the Advection Equation, Journal of Applied Meteorology,
7(2) (1967), 160-167; doi:10.1175/1520-0450(1968)007<0160:AOFDMA>2.0.CO;2

[18] A. Lerat, Une classe de schemas aux differences implicites pour les systemes hyperboliques de lois de conservation, Comptes Rendus
Acad. Sc. Paris, Ser. A 288 (1979), 1033-1036.

 

·                IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2025, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/