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Abstract

In this second paper of a series, we revisit all major systematic un-
certainties that affect a complete and unbiased sample of eleven finite
difference schemes for advection-like equations. In order to provide the
coherent picture, unlike the existing way, we use as the key tenets both
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the reverse Taylor’s analysis and the discrete Fourier’s analysis, as well
as the monotonicity analysis. For every type of scheme, their theoreti-
cal uncertainties are examined. A detailed graphical investigation is also
provided and used to give a physical reinterpretation of the Courant-
Friedrichs-Lewy condition. We find that no scheme considered in this
study resolves the smaller length scales well. Furthermore, we present
several numerical experiments on an equal footing corroborating our
demonstrations and proving to what degree the accuracy of each scheme
is impaired by the discontinuities in the data. A comparison with each
other is made as well. We definitively establish that the ingenious Lax-
Wendroff scheme is preferred by experiments.
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1. Introduction

We plan to numerically integrate the advective-diffusive transfer pro-
cess, which is yet to be fully understood [1]. In the first paper of this
series [2, hereafter referred to as Part I] we re-investigated how well finite
difference schemes solve the diffusive transfer and how we can qualita-
tively (based on the Hirt’s formalism) and quantitatively (based on the
von Neumann’s formalism) describe their uncertainties, which allowed us
to conclusively assess the importance of various approximations. Hence,
we now wish an equally deep dive into advective transfer.

The scope of this Part I1 is exactly to integrate the simplest (Dirichlet,
linear and unidimensional) hyperbolic differential equation using all at
most three-level, low-order schemes. Also, we do it in the chronological
sequence in which they were developed. While doing so, we explain all the
methodological insights and concerns of the difference equation needed
to follow the very recent review by Sagaut et al. [1]. This is the position
of our entry-level paper with respect to the state of art. However, in
what follows we will not review the principles of this finite difference
approach but refer the reader to Part I for their details and clarification
of notation.
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The paper is organized as follows. In Section 2 we rigorously in-
vestigate all eleven pioneering schemes which our topical current un-
derstanding of hyperbolic differential equations is based on, namely the
Richardson’s, Schmidt’s, Crank-Nicolson, Laasonen’s, Courant-Isaacson-
Rees, Lax’s, Lax-Richtmyer, Wendroft’s, Lax-Wendroff, Molenkamp’s
and Lerat’s schemes. In Section 3 we implement all of these schemes.
Then, as a proof of concept, we both discuss their performance prop-
erties and eventually compare them with each other. Finally Section 4
presents a short summary and conclusive remarks, highlighting the dif-
ferences between the dissipative couplings of Part I and the dynamical
couplings of Part II. Motivated in particular by discontinuities in the
data, A shows the exemplary initial value problem, as simple as it is very
interesting, we apply in Section 3.

2. The difference equations

In this section we lay groundwork for detailed follow-up performance
tests. We thoroughly revisit the finite difference equations for canonical
linear advection equation, Eq. (2.17) of Part I, up to second order in
the derivatives and also carefully examine the sources and form of their
theoretical uncertainties, i.e. we answer analytically to consistency, sta-
bility and convergence criteria. We highlight the conceptual differences
between not only hierarchical and monolithic schemes but also notably
two and three level hierarchical schemes. We also show for the first time
the risk of spatial oscillations throughout the entire range of wavenum-
bers, that is to say we examine separately all the Fourier components of
the spatial variation. We sort the exposition, motivated by technical con-
siderations lacking in literature, by chronology and acknowledging their
authors.

To aid comparison with our canonical linear advection equation we
note that the exact growth factor is unity, the exact propagation velocity
is the constant v and we shall represent exact phase angle, —C' kAx, in
every scheme.

2.1. The Richardson’s 1910 three-time-level explicit scheme.

2.1.1. Construction. In 1910 Richardson [6] devised the pioneering sche-
me which was explicit in time and gave values at any time level in terms
of values at the previous two time levels. To achieved this, he discretized
both time and space derivatives by second order central differences, Eqs.
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(2.9) and (2.10) of Part I respectively, i.e.,
n+1 n—1 n n
i -1 :_Uj}+1_79—1‘

2At 2Ax

However, as a three-time-level bottom-up scheme that it is, the Richard-
son’s scheme has the problem of setting the initial grid function value;
i.e. we have to decide how start the process. The solution is to use any
other single-step scheme, as shortly discussed.

(2.1)

TABLE 1. Schemes analysed in this work. Note that n rep-
resents the temperature at the current time step whereas
n+1 (colored in red) represents the new (future) tempera-
ture. Note also the temperature one time step in the past,
n — 1 (colored in violet).

Author Algorithm

Richardson [6] T = T;’_l +C(T7y — T744)

Schmidt [8] T =TP —0.5C (T]y, — T 1)

Crank-Nicolson [9)] —025C T/ T +025C T =025C T + T —0.25C T4
Laasonen [11] —05CT T/ +05CT ! =T)

Courant-Isaccson-Rees [12] 77" = (1 - C)T} + CTf,

Lax [13] T =05(1-C) Ty +05(14+C) Ty

Lax-Richtmyer [14] —0.5CT ! + T/ +05C T =05(Ty + Tf)

Wendroff [15] Q-0 +(1+0) T =(1+0) T + (1 - CO) T}
Lax-Wendroff [16] T =05(CP+C) Ty + (1 - C*)I] +05(C° = C) T,y
Molenkamp [17] —CTM ™ +(1+0) T =T

Lerat [18] 0.5(-=C*=C)I7 ' + 1+ CHT T +05(=C*+O) T =T

For easy reference we reformulate Eq. (2.1) in the second column in
Table 1 introducing, for convenience, the so-called dimensionless Courant-
[saacson-Rees number:

At
C=v—, 2.2
Ay (2.2)
which, like the dimensionless Fourier number solutions of parabolic par-
tial differential equations (e.g. see Part I), provides a measure for the
spatiotemporal discretization.

2.1.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of the grid function at points other than point (z;,¢") in the scheme



REVISITING FINITE DIFFERENCE ... 77

in a Taylor series around the value T} at that point (z;,t"), i.e. substi-
tuting Eqgs. (2.6), (2.8), (2.12) and (2.13) of Part I in Eq. (2.1), gives
oT N oT v(Az)2 T  (At)? 93T

o " Vor T 6 o5 6 oB (2:3)

We then see from that equation, which is not yet the modified equation,
that its right hand side vanishes when At — 0 and Az — 0 and there-
fore the Richardson’s scheme of calculation is consistent. In addition,
this side goes to zero as the second power of At and the second power of
Ax, implying that the scheme is of second order accuracy in both time
and space as well. Indeed, this result further verifies what would other-
wise be expected because the way this scheme is based on Taylor series
expansions.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modiﬁed equation. In order to achieve it, We ﬁrstly
find expressions for 2 at3 , and secondly (be careful with this) for 2.-. and
%, by differentiating Eq. (2.3); all of which we use systematlcally
to eliminate the time derivatives in it. This implies that the modified
equation associated with the Richardson’s scheme, the equation of the
grid function from Richardson’s difference equation, is:

ar  or 1 , (Az) 9T
o Vs 6Ot TA o

which is one of two ways to next not only calculate the local error but
also estimate the stability (see below).

+ O((Ax)*), (2.4)

2.1.3. Stability. We secondly analyze the stability using the von Neu-
mann’s method. Substituting a term of Eq. (2.1) of Part I into each
term in Eq. (2.1) we get the equation for the growth factor (Eq. (2.15)
of Part I),

Gl _oeivar _ginany = L L oiogn(hae),  (25)

G G
whose complex solutions are
Gy = +4/1 - [C sin (kAx)]2 — i C sin (kAx). (2.6)

That is to say, given its nature of three time levels, in a given instant each
real valued growth factor associated with the Richardson’s scheme has
two temporal modes present in the numerical solution. In other words,
as a three time level that it is, this scheme has two temporal modes.
Note, the solution GG corresponds to the physical mode because for well
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resolved components (kAz < 1) its real (observable) part is as it should
be; and viceversa:

lim R(G) = +1. (2.7)

kAz—0
Here, concerning stability, the growth factor magnitudes are such that

(1) either the radical in Eq. (2.7) is negative, i.e. C > 1 which
implies |G| > 1, which does not satisfy Eq. (2.16) of Part I and
thus the scheme is unstable;

(2) or the radical in Eq. (2.7) is positive, i.e. C? < 1 which implies
|G+| = 1, satisfying stability criterion.

Therefore, the Richardson’s scheme is neutrally stable,

G| =1, (2.8)

i.e. the amplitudes of the Fourier components neither increases nor de-
crease as time evolves which is a desirable property because is in line
with the lack of diffusion of the general analytical solution (Eq. (2.18)
of Part I), only if we restrict to the so-called (after its discoverers [7])
Courant-Friedrichs-Lewy condition for the explicit numerical solutions of
hyperbolic partial differential equations:

C <1, (2.9)

which, like the Courant-Friedrichs-Lewy-type condition in parabolic par-
tial differential equations, provides critical information about the number
of discretization points over the wave length to be selected. In partic-
ular, this inequality states that because the explicit schemes use infor-
mation from the previous time step to find the solution of the present
time step it is hence necessary to use a small specific time step size. On
the other hand, because the implicit schemes majorly use information
from neighboring points of the current time step to find the solution it
is hence viable to use a large time step size. However, the physical in-
terpretation of the Courant-Friedrichs-Lewy condition in hyperbolic par-
tial differential equations, Eq. (2.9), is quite different from that of the
Courant-Friedrichs-Lewy-type condition in parabolic partial differential
equations, F' < 0.5, as mentioned in Part I. In a superficial way, Eq.
(2.9) is interpreted as a condition which constraints the grid speed to be
greater than the advection speed. We revise this interpretation below.
Alternatively, the modified equation is another way to obtain this.
The first (odd) term on the right hand of Eq. (2.4), which acts as a
dispersive term, has to be positive for T} not to be propagated in the
opposite direction; i.e. has to be C' < 1, as we have just obtained.
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2.1.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Richardson’s modified equation 2.4 we see
that there is only odd-order derivatives, implying the damping term of
the numerical solution is clearly unity (see Eq. (2.27) of Part I) which is
shown in left panel of Fig. 1.

Richardson scheme Richardson scheme
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kAx kAx

F1GURE 1. Damping factor and relative amplitude error
as a function of phase angle or frequency, in radians, for
specific C' number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

§A =0, (2.10)

as shown in right panel of Fig. 1.

On the other hand, by applying the discrete Fourier series grid solu-
tion of Eq. (2.1) of Part I to the Richardson’s modified equation (2.4)
truncated up to the five-order derivatives, then we see that the dispersive
term is given by

At

implying the dispersive phase velocity shown in Fig. 2. We find a numer-
ical propagation speed smaller than the physical one, but shifting closer
to the physical one with increasing C’s. This leads to the striking fact
that the instantaneous velocity flips sign once a instability-threshold is

exp {zk‘ {x—vtjué(C—c?’) (Az) kzt]}, (2.11)
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reached, when the numerical speed reaches exact value. More on this
later.

Richardson scheme

FI1GURE 2. The phase velocity of the Richardson’s solution
(approximated to the five-order derivatives), Eq. (2.11)
vs. frequency in radians, for specific C' values which are
distinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, each discrete Fourier component that is a solution to the Richard-
son’s scheme (see Eq. (2.1) of Part I for the full series which is the sum
over all the possible wave numbers) is a linear combination of the two
wave solutions contained in the growth factor, Eq. (2.7), with magnitude
components given by Eq. (2.8) and with the numerical phase components
of each of these two modes given by

= arctan j(Gi) = arctan _CSin <kAx)
Ox = arct <%(Gi)) ' (i\/l —[C sin (mx)P)’ (2.12)

which we show in the upper panels of the Fig. 3, finding that they are
such that verify the relationship ¢, +¢_ = —n. Hence, the Richardson’s
numerical solution in space and time for each Fourier mode becomes

Tan _ (Cl €z¢+ nAt +eyel (7T+¢+)nAt) ezijx

— (Cl €i¢+nAt + (_1)n Cs €i¢+nAt) eiijz’ (2.13)
i.e. the second term alternates signs in each time step, is therefore un-
physical or false and generates instabilities. This is a interesting but
undesirable behavior which is caused because the Richardson’s scheme is

a three time level scheme. In fact, we found a similar behavior using the
Du Fort-Frankel scheme in Part I.
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Therefore, since the exact phase speed is the —v, we present in lower
panels of the Fig. 3 the physical and computational relative phase errors
(see Eq. (2.30) of Part I) of the Richardson’s scheme plotted against the
phase angle for specific C' values.

Richardson scheme Richardson scheme

—— C=0.100
— C=0.250
X — C=0500 —2.0 - Analytical

C=0750 —— Numerica,

C=1.000
— C=1250
————— Analytical
~3.04 — Numerica I 30

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0
kax kAx

Richardson scheme Richardson scheme

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
kax kAx

F1GURE 3. Upper: the numerical phase components of G
and G_, respectively. In an Argand diagram G, is in the
fourth quadrant and G_ is in the third quadrant (n.b., Eq.
(2.12)). Lower: the physical (left panel) and computational
(right panel) relative phase errors as a function of phase
angle or frequency, in radians, for specific C' number values.

Examining the left panels in Fig. 3 referring to the physical waves,
we can see that although both low and high frequency harmonics are
nearly stationary, the mid oscillatory waves are propagated with different
speeds, implying that the Richardson’s scheme is selectively dispersive.
Specifically, this implies that whilst the low frequency physical (numer-
ical) waves are well resolved, those with high frequency will be poorly
resolved (d¢ ~ —1 in the right panel). The same is true for the the
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extra solution, the computational (numerical) waves showed in the right
panels in Fig. 3, propagating in opposite direction as we deduce from
these panels. Furthermore, we observe in Fig. 3 (see, e.g., the left pan-
els referring to the physical waves), in agreement with Fig. 2, that for
C' < 1 the physical waves have leading shift, d¢ < 0 (see especially the
lower panels of Fig. 7), indicating a numerical propagation speed smaller
than the physical one; but shift closer to the line ¢ = 0 once the sta-
bility threshold is reached, when the relative phase shift error flips sign
and the Fourier modes will have lagging shift (see red line in Fig. 3).
Finally, Fig. 3 also shows us that in the remaining case, C' = 1, the
Richardson’s scheme is exact (remembering Fig. 1). Indeed, in this case
we deduce that Eq. (2.1) reduces to T;‘“ = T}, since along charac-
teristics Tj"_1 = T}, (see A); i.e., in this case the even and odd time
steps are not decoupled and do not split apart. However, this does not
mean that there is no moderate oscillations from the linear combination
of the two left and right panels of the Fig. 3 corresponding to the phys-
ical and computational modes, respectively; which increase as the time
progresses.

2.1.5. Monotonicity. Finally, Eq. (2.1) violates the condition for pre-
serving monotonicity (Eq. (2.31) of Part I) since the term 77, has a
coefficient —C' < 0. That is, the Richardson’s scheme is nonmonotone.

Hence, it also may produce additional spurious oscillations.
2.2. The Schmidt’s 1924 single-step explicit scheme.

2.2.1. Construction. In 1924 Schmidt [8] proposed a second order ap-
proximation for the spatial derivative but forward in time, i.e.
n+1 n n n
i -1 :_UTjJrl_Tj—l (2.14)
At 2Ar '

which is also reformulated in Table 1 using Eq. (2.2). In this way he was
able to avoid the initial value issue that the Richardson’s scheme applied
to the linear differential equation had, i.e. this scheme is a one-step,
explicit scheme.

2.2.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of the grid function at points other than point (z;,¢") in the scheme
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in a Taylor series around the value T} at that point (z;,t"), i.e. substi-
tuting Eqs. 2.6, 2.12 and 2.13 of Part I in Eq. (2.14), gives

T aT (A) T v(Ax)? 33T  (At)2 3T

ot " 'er 2 a2 6 0.8 6 op
We then see from that equation, which is not yet the modified equation,
that its right hand side vanishes when At — 0 and Ax — 0 and therefore
the Schmidt’s scheme of calculation is consistent. In addition, this side
goes to zero as the first power of At and the second power of Az, imply-
ing that the scheme is of first order accuracy in time and second order
accuracy in space as well. Indeed, this result further verifies what would
otherwise be expected by construction because the way this scheme is
based on Taylor series expansions.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly

find expressions for %QTQT and %%T, and secondly (be careful with this)

for 8?:27{;15 and 8%7;2, by differentiating Eq. (2.15); all of which we use

systematically to eliminate the time derivatives in it. This implies that
the modified equation associated with the Schmidt’s scheme, the equation
of the grid function from Schmidt’s difference equation, is:
or ~or 1 (Ax)?0*T 1 (Ax)3 03T

il i 2 —(_ o 3
ot T =300 ) A o O 29 A o

(2.15)

+0((Ax)?),
(2.16)

which is one of two ways to next not only calculate the local error but
also estimate the stability (see below). So far so good.

2.2.3. Stability. We secondly analyze the stability using the von Neu-
mann’s method. Substituting a term of Eq. (2.1) of Part I into each
term in Eq. (2.14) we get the complex valued growth factor (Eq. (2.15)
of Part I) associated with the Schmidt’s scheme,

1 ) .
G=1- 50 (elkAr _ omikdey — 1 i C'sin (kAw), (2.17)

whose magnitude component takes the form
|G| = /1 + (C'sin (kAx))2, (2.18)

which does not satisfy Eq. (2.16) of Part [ and thus the scheme is unstable
for the advection equation, as shown in Fig. 4 where we find that the
relative dissipation error (Eq. (2.29) of Part I) is higher to 0. Hence, and
because of its enormous simplicity, the Schmidt’s scheme may be used
just to initiate the Richardson’s scheme.
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Schmidt scheme
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FIGURE 4. Relative amplitude error as a function of phase
angle or frequency, in radians, for specific Courant number
values.

Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.16), which acts as a
diffusive term, has to be positive for 7" to be decayed; i.e. has to be
C? < 0, which is impossible; implying Schmidt’s T/"*' grows and become
dissipatively unstable/unbounded, confirming Eq. (2.18).

So that is all on the application of the Schmidt’s scheme to advection
equations.

2.3. The Crank-Nicolson 1947 single-step semi-explicit scheme.

2.3.1. Construction. In 1947 Crank and Nicolson [9] achieved a forward
in time scheme using, to say the least, the average of the scheme formerly
proposed by Schmidt and the Laasonen’s scheme described below. Hence,
this scheme is not based on Taylor series expansions, implying that we
do not know apriori whether the consistency requirement is satisfied or
not. In this way they obtained the scheme:

n+1 n n+1 n+1 n n
T} B 7-'3 _ 1 (7}“!‘1 B 7—}—1 + 7}+1 B 7}—1) , (219)

At T2 2Ax 2Az
which is again reformulated in Table 1 using Eq. (2.2).

This is also a one step scheme. However, as a scheme that does not
proceed in a hierarchical, bottom-up fashion, the Crank-Nicolson scheme
gives a (tridiagonal) system of equations to solve for all the values of
T+ simultaneously and we must to resort to standard matrix equation
solvers (e.g., see [10]), which is complicated to implement for parallel
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execution. Specifically, the Crank-Nicolson scheme will be referred to
as a semi-explicit scheme since Tj”Jrl depends also on data at next time
level. Besides, this monolithic nature of several much-used nonexplicit
schemes implies that any anomaly strongly affects the entire solution;
which, depending on the initial conditions, is not necessarily one more
attractive feature for diffusion (see next Section).

2.3.2. Consistency and order of accuracy. Eq. (2.19) now poses a
significant challenge to deriving consistency because we must reduce the
number of indexes in it before raising and/or lowering them. Thus, in
this situation we reformulate Eq. (2.19) once more so it would be suitable
to derive an equation with derivatives only. Specifically, we rewrite Eq.
(2.19) as T/ = TP + 0.5C T2 — 050112, Next, substituting
each value of T' at points other than point (x;,#"+/2) in this equation in
a Taylor series around the value 77" at that point (xj, t7H1/2) | gives
2 93 2 93
8_T+08_T:_U(Ax)8T_(At)aT+”'. (2.20)
ot Ox 6 Oz 24 0Ot3
We then see from that equation, which is not yet the modified equation,
that the right hand side vanishes when At — 0 and Az — 0 and therefore
the Crank-Nicolson scheme of calculation is consistent. In addition, this
side goes to zero as the second power of At and the second power of Ax,
implying that the scheme is of second order accuracy in both time and
space.
We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly

find expressions for %QTQT and %37?, and secondly (be careful with this)
for gQgt and 8‘132:2” by differentiating Eq. (2.20); all of which we use

systematically to eliminate the time derivatives in it. This implies that
the modified equation associated with the Crank-Nicolson scheme, the
equation of the grid function from Crank-Nicolson difference equation,
1s:

3 93
O 0T _ L _yo—gcs BT

ot o0r 24 At 023

which is one of two ways to next not only calculate the local error but
also estimate the stability.

+ O((Ax)?), (2.21)

2.3.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
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term in Eq. (2.19) we get the following complex valued, growth factor
associated with the Crank-Nicolson scheme:

B 1—i$sin (kAz) B
~ 1+i$sin(kAz)

i.e. the amplitudes of the Fourier components neither increases nor de-
crease as time evolves, which is a desirable property because is in line with
the lack of diffusion of the general analytical solution (Eq. (2.18) of Part
I). Hence, the Crank-Nicolson scheme is stable even at large time step
size, although (be careful with this) this will not necessarily give accurate
solution. This is because, the non-explicit schemes use the information
from neighboring cell of the current time step to find the solution.

Alternatively, the Hirt’s method is another way to obtain this. The
even, first term on the right hand of modified equation Eq. (2.21), which
acts as a dispersive term (is an odd-order derivative), is always negative
and also there is no diffusive derivatives implying that the Crank-Nicolson
scheme is indeed neutrally stable.

(2.22)

2.3.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Crank-Nicolson modified equation (2.21) we
see that there is only odd-order derivatives, implying the damping term
of the numerical solution is clearly unity (see Eq. (2.27) of Part I) which
is shown in left panel of Fig. 5.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

§A =0, (2.23)

as shown in right panel of Fig. 5. The same as the Richardson’s scheme.

On the other hand, by applying the discrete Fourier series grid so-

lution of Eq. (2.1) of Part I to the Crank-Nicolson modified equation

(2.21) truncated up to the five-order derivatives, then we see that the
dispersive term is given by

1 (Ax)3

k| —vt+—(4C+2C°%) ———k*t 2.24

exp{z {a: v +24( + ) Az ; (2.24)

implying the dispersive phase velocity shown in Fig. 6. We now find a

numerical propagation speed smaller than the physical one, but shifting

away from the physical one with increasing C’s. This leads to the fact
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Crank — Nicolson scheme Crank — Nicolson scheme
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kAx kAx

F1GURE 5. Damping factor and relative amplitude error
as a function of phase angle or frequency, in radians, for
specific C' number values.

that the instantaneous velocity does not flip sign because the numerical
speed never reaches exact value, implying the Crank-Nicolson scheme
don’t have instability issue. More on this later.

10 Crank — Nicolson scheme
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0.0

F1GURE 6. The phase velocity of the Crank-Nicolson so-
lution (approximated to the five-order derivatives), Eq.
(2.24) vs. frequency in radians, for specific C' values which
are distinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Crank-Nicolson growth
factor, Eq. (2.22), is given by

= arctan HG) = arctan —C'sin(kAz)
0=t (SR(G)) t (1 — (¢ sin(kAa:))2>’ (2:25)
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which we show in the left panel of the Fig. 7.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 7 the numerical relative phase error (see Eq. (2.30)
of Part I) of the Crank-Nicolson scheme plotted against the phase angle
for specific C' values.

Examining the phase component of the scheme for the resolvable wave
number components of the numerical solution, Fig. 7, we can again see
that although both low and high frequency harmonics are nearly sta-
tionary, the mid oscillatory waves are propagated with different speeds,
implying that the Crank-Nicolson scheme is also selectively dispersive.
Specifically, this implies that whilst the low frequency waves are well re-
solved, those with high frequency will be poorly resolved (§¢ ~ —1 in the
right panel). Also, for all values of C' we have leading shift, the relative
phase error is less than 0 (see the right panel of Fig. 7), indicating a nu-
merical propagation speed smaller than the physical one; but shift away
from the line d¢ = 0 or the physical speed (see the left panel), implying
the Crank-Nicolson scheme don’t have instability issue. Finally, Fig. 7
(especially its right panel) also shows us that relative phase is very little
affected by the value of C.

Crank — Nicolson scheme Crank — Nicolson scheme

— C=0.100
— C€=0.250
. — C€=0.500
C=0.750
Cc=1.000
) — C=1.250
————— Analytical
—~3.01 — Numerical

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
kAx kAx

FIGURE 7. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

2.3.5. Monotonicity. Finally, from the Eq. (2.19) the coefficients of
the new solution are 1, % and —% That way, the Crank and Nicolson
scheme is nonmonotone. Hence, it also may produce additional spurious
oscillations.
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2.4. The Laasonen’s 1949 single-step implicit scheme.

2.4.1. Construction. In 1949 Laasonen [11] used the same approxima-
tion as Schmidt did, but evaluating the space derivative forwards in time,
at time step n + 1 instead of at time step n; i.e.,
Lt N Sl = (2.26)
At 2Ax
Table 1 emphasizes that Eq. (2.26) is purely time-implicit. Therefore,
as a non-explicit scheme that it is, the solution at the next time level is
computed from the present time level by solving the tridiagonal system
of equations that Eq. (2.26) gives (e.g., see [10]). The same as the
Crank-Nicolson scheme.

2.4.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T' at points other than point (z;,¢"™) in the scheme in a Taylor
series around the value Tf‘“ at that point (x;,t"*1), i.e. we substitute
Egs. 2.6, 2.12 and 2.13 of Part I in Eq. (2.26), gives

OT | OT _ AT w(Aa)? 0T  (A?0°T
ot " Yor T 2 o 3 0rd 6 o

We then see from that equation, which is not yet the modified equation,
that the right hand side vanishes when At — 0 and Az — 0 and there-
fore the Laasonen’s scheme of calculation is consistent. In addition, this
side goes to zero as the first power of At and the second power of Ax,
implying that the scheme is of first order accuracy in time and second
order accuracy in space as well. Indeed, this result further verifies what
would otherwise be expected because the way this scheme is based on
Taylor series expansions.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly

find expressions for %QTQT, and secondly (be careful with this) for %ST?, aa;aTt

and %, by differentiating Eq. (2.27); all of which we use systematically
to eliminate the time derivatives in it. This implies that the modified
equation associated with the Laasonen’s scheme, the equation of the grid

function from Laasonen’s difference equation, is:

or o
ot U&E

(2.27)
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+0((Ax)h),

(2.28)
which is one of two ways to next not only calculate the local error but
also estimate the stability.

_O_Z(A:c)282T_ C+2C% (Az)3 0°T O_Q(Aa;)4a4_T
2 At 022 6 At 0x3 12 At Ozt

2.4.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.26) we get the following complex valued, growth
factor associated with the Laasonen’s scheme:

1 1 —iCsin (kAx)

1+iCsin(kAz) 1+ C?sin® (kAx)’ (2.29)
whose magnitude component takes the form
14 C?sin® (kA

G| = V14 Csin® (FAx) 1, (2.30)

1+ C'sin (kAx)

which satisfies Eq. (2.16) of Part I and thus the Laasonen’s scheme is
stable for the advection equation.

Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.28), which acts as a
diffusion term, always is positive implying that the Laasonen’s scheme is
indeed unconditionally stable.

In fact, this property of being stable turns out to be true for all purely
implicit schemes. That said, if not for stability, for accuracy we cannot
use a large time step. To clearly see it, note the ratio of the Laasonen’s
numerical damping rate (from Eq. (2.28) of Part I, e~ #rmAt = |G|) to
the exact damping rate (the unity) is

w V14 C2?sin® (kAx)
numzl _ ]{?A 2]{?A 2 k}A 3.
w n( 1+ C'sin (kAz) C (kAz)+CH(kAT)+O((kAT)7);
(2.31)
which show us that for, e.g., C' = 1 the error on the damping rate is as
much as about the exact damping rate (Eq. (2.31) is on average about

1).

2.4.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.
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On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Laasonen’s modified equation (2.28) trun-
cated up to the five-order derivatives we see that the damping term of
the numerical solution is not unity as it should be but it is given by

22 (Ax)? C? (Ax)*

exp | — K At + — ———k* At] , (2.32)

2 At 12 At
which is shown in left panel of Fig. 8.

Laasonen scheme Laasonen scheme
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FIGURE 8. Damping factor (approximated to the five-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific
C number values. We conclude that the damping factor
offers an average description of evolutionary behaviors of
amplitudes that is valid at least qualitatively.

We naturally notice that there is no dissipation for £ = 0 and it will
be greater for larger values of k, i.e. at higher wavenumbers. Also the
Hirt analysis illustrates that dispersion of this scheme (in fact, almost
always) is one order of magnitude smaller than its dissipation.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

V14 O?sin? (kAx) .
1+ C'sin (kAz) ’

and is shown in right panel of Fig. 8 where we find, in agreement with
the left panel remembering this is obtaining by truncating the numerical
solution up to the five-order derivatives, that it both decreases rapidly a
little from 0 at KAz = 0 (for consistency reasons) and increases rapidly

0A =

(2.33)
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to 0 again at kAxz = m; i.e. the Laasonen’s scheme is not uniformly
dissipative, although its effect is not too great but relatively weak.

On the other hand, by applying the discrete Fourier series grid so-
lution of Eq. (2.1) of Part I to the Laasonen’s modified equation (2.28)
truncated up to the five-order derivatives, then we see that the dispersive
term is given by

3
exp{ik {x—vt+1(0+203)wk2t]}, (2.34)
6 At

implying the dispersive phase velocity shown in Fig. 9. We find a numer-
ical propagation speed smaller than the physical one, but moving away
from the physical one with increasing C’s. This leads to the fact that
the instantaneous velocity does not flip sign because the numerical speed
never reaches exact value, implying the Laasonen’s scheme don’t have
instability issue. More on this later.

10 Laasonen scheme

0.8

0.6

0.4

0.2

F1GURE 9. The phase velocity of the Laasonen’s solution
(approximated to the five-order derivatives), Eq. (2.34)
vs. frequency in radians, for specific C' values which are
distinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Laasonen’s growth factor,
Eq. (2.29), is given by

JG
¢ = arctan (Dfs(G))) = arctan [—C'sin (kAx)], (2.35)
which we show in the left panel of the Fig. 10.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 10 the numerical relative phase error (see Eq.
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(2.30) of Part I) of the Laasonen’s scheme plotted against the phase
angle for specific C' values.

Laasonen scheme Laasonen scheme

— C=0.100 N
— C=0250 AN -0.6
01 — c=o0500 h

C=0.750

C=1.000
— C=1250
----- Analytical
-3.01 —— Numerical

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
kAx kax

FIGURE 10. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

We find that the (dispersive) behavior is similar to that using the
Crank-Nicolson scheme. Indeed, the left panel of Fig. 10 shows us that
for all values of C' we have leading shift, the relative phase error is less
than 0 (see the left panel of Fig. 10), indicating a numerical propagation
speed smaller than the physical one; but shift away from the line d¢ = 0,
implying again the Laasonen’s scheme don’t have instability issue, either.
However, let’s not forget that the Laasonen’s dissipative behavior is much
worse than that using the Crank-Nicolson scheme.

2.4.5. Monotonicity. The Laasonen’s scheme is an implicit scheme.
Since Tj’”r1 depends only on T}, then we cannot use the convex com-
bination technique. Therefore we must demonstrate Eq. (2.31) of Part
I. From Eq. (2.26) (see Table 1) we also get

—05CTM + T +0.5C T =17, (2.36)
which subtracted from Eq. (2.26) gives

T TR = T - T = 05.C (T = ) + 0.5 (5! — T4,

(2.37)
and if in this equation we take the absolute value of both sides, use the
triangle inequality on the right-side and sum the two sides over all j then
we get Eq. (2.31) of Part 1. Hence, the Laasonen’s scheme is monotone
and does not introduce oscillations.
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2.5. The Courant-Isaacson-Rees 1952 single-step explicit scheme.

2.5.1. Construction. In 1952 Courant, Isaacson and Rees [12] used the
forward in time approximation, Eq. (2.6) of Part I, to replace the time
rate of change and the one-sided in the correct direction Eq. (2.10) of
Part I for the first order derivative in space. In this way they obtained
the following one-step, explicit scheme:
n+1 n n n
I IS ) ) (2.38)
At Ax

which is reformulated in Table 1 using Eq. (2.2).

2.5.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T" at points other than point (x;,t") in the scheme in a Taylor
series around the value 77" at that point (z;,t"), i.e. we substitute Egs.
2.6 and 2.13 of Part [ in Eq. (2.38), gives

or 9T  vAzd*T Atd*T v(Az)?0°T (At)*0°T

9t TP T 2 a2 2 e 6 0z G

(2.39)
We then see from that equation, which is not yet the modified equa-
tion, that the right hand side vanishes when At — 0 and Az — 0 and
therefore the Courant-Isaacson-Rees scheme of calculation is consistent.
In addition, this side goes to zero as the first power of At and the first
power of Az, implying that the scheme is of first order accuracy in both
time and space as well. Indeed, this result further verifies what would
otherwise be expected because the way this scheme is based on Taylor
series expansions.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly

find expressions for %27? and %37?, and secondly (be careful with this)
for gjgt, a?:%t and ai?g;?, by differentiating Eq. (2.39); all of which we

use systematically to eliminate the time derivatives in it. This implies
that the modified equation associated with the Courant-Isaacson-Rees
scheme, the equation of the grid function from Courant-Isaacson-Rees
difference equation, is:

or o
ot U&E
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+0((Ax)Y),

(2.40)
which is one of two ways to next not only calculate the local error but
also estimate the stability.

_C— C? (Ax)?0°T N —C+3C? =203\ (Az)? 03T
a 2 At O0x? 6 At O0x3

2.5.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.38) we get the following complex valued, growth
factor associated with the Courant-Isaacson-Rees scheme:

G=1-C+Ce*?® =1—-C[l — cos (kAz)] — i Csin (kAz), (2.41)

whose magnitude component takes the form

1G] = /1 —-2C(1 —C)[1 — cos (kAz)], (2.42)
which satisfies Eq. (2.16) of Part I if
(1-C) > 0. (2.43)

Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.28), which acts as a
diffusion term, must always be positive for 77" not to be inflamed in time;
i.e. has to satisfy Eq. (2.43), implying that the Courant-Isaacson-Rees
scheme is indeed conditionally stable.

2.5.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Courant-Isaacson-Rees modified equation
(2.40) truncated up to the four-order derivatives we see that the damping
term of the numerical solution is not unity as it should be but it is given

by
exp [— <C — 02> (A2)* 1o At] , (2.44)

2 At

which is shown in left panel of Fig. 11.
Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

§A =+/1-2C0(1 — O)[1 — cos (kAx)] — 1. (2.45)

and is shown in right panel of Fig. 11 where we find, in agreement with
the left panel, that it increases outside the stability region, is 0 for C' =1,
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Courant — Isaacson — Rees scheme Courant — Isaacson — Rees scheme
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FIGURE 11. Damping factor (approximated to the four-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific C'
number values.

and decreases rapidly from 0 at kAz = 0 (for consistency reasons) when
the frequency increases (the yellow line and the blue one are the same
line). We shall point out later that this dissipative rapid decrease is
typically seen in first order schemes. We also find that the strongest
damping occurs at C' = 0.5 because this value maximizes 2C(1 — (),
which will be relevant to the kinetic regimes that follow.

On the other hand, by applying the discrete Fourier series grid solu-
tion of Eq. (2.1) of Part I to the Courant-Isaacson-Rees modified equa-
tion (2.28) truncated up to the five-order derivatives, then we see that
the dispersive term is given by

3
exp{z'k {x—vw1(0—302+2C3)Ml€2t”, (2.46)
6 At

implying the dispersive phase velocity shown in Fig. 12. Surprisingly,
here we find that the instantaneous velocity flips sign twice (the green
line and the orange one are the same line), when C' = 0.5, and when
C' =1 (the blue line and the red one are the same line). For C' < 0.5
we find a numerical propagation speed smaller than the physical one,
but shifting closer to the physical one with increasing C’s. This leads
to the very striking fact that the instantaneous velocity flips sign once
a threshold is reached, when the numerical speed reaches exact value at
C = 0.5, but while the damping is strong enough to prevent unstable
numerical growth. Then for C' > 0.5 the trend reverses and hence a
new cycle begins having a numerical propagation speed larger than the
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physical one, but shifting again closer to the physical one with increasing
("’s. Again this leads to that the instantaneous velocity flips sign once the
same threshold is again reached, when the numerical speed again reaches
exact value at C' = 1, which is nondamping implying, this second time,
instability. More on this later.

Courant — Isaacson — Rees scheme

F1GURE 12. The phase velocity of the Courant-Isaacson-
Rees solution (approximated to the four-order derivatives),
Eq. (2.46) vs. frequency in radians, for specific C' values
which are distinguished by line colors.

Incidentally, we also can obtain these coefficients of diffusion and dis-
persion from by differentiating Eq. (2.42) with respect to k; specifically

1 92 — 02\ (Ax)2
Lo, | _ (€= C7) (Az)" (2.47)
2 0k?|,_, 2 At
1 3 _ 2 2 3 A 3
1 0w, __(¢-3C"+2C (Az) ‘ (2.48)
6 O0k3 |,_, 6 At

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Courant-Isaacson-Rees
growth factor, Eq. (2.41), is given by

o= meon (gicy ) = mom (i T etiay) @)

which we show in the left panel of the Fig. 13.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 13 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Courant-Isaacson-Rees scheme plotted against
the phase angle for specific C' values.
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To shed light on the stability issue is key to consider left panel in Fig.
13 where we find, in perfect agreement with findings from 12, that for
C' < 0.5 waves have leading shift but shift closer to the ¢ = 0 (in the
right panel in Fig. 13 the green line and the orange one are the same line)
up to the stability threshold is reached when we have no dispersion error,
the relative phase shift error flips sign and the Fourier modes have just
the opposite, i.e. lagging shift. Now only short waves with C' < 0.5 are
poorly resolved, quasi-stationary waves. Nevertheless, for 0.5 < C' < 1
the modes stay in the stable regimen and continue shifting closer to the
d¢ = 0 (see the right panel in Fig. 13) up to the stability threshold is
again reached when we have no dispersion error either, the relative phase
shift error flips sign again and the Fourier modes have again leading
shift but now driving the solution to instability since, unlike the case
when C' = 0.5, with C' = 1 the diffusion vanishes when we do reach
the analytic solution. In fact, we finally deduce that Eq. (2.1) reduces
to Tj”Jrl = T7*, if C = 1, the exact solution (see A). The same as the
Richardson’s scheme but in a direct way. In other words, its only error
comes from the discretization of the initial condition. However, this does
not happen in general; i.e. does not necessarily hold in nonlinearities.

Courant — Isaacson — Rees scheme Courant — Isaacson — Rees scheme

— €=0.100
— C€=0250
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—0.75 C=1.000
—— C=1.250

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kAx

F1GURE 13. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

2.5.5. Monotonicity. Finally, from the Eq. (2.38) the coefficients of
the new solution are 1 — C' and C. That is, they are all positive in the
stability region, Eq. (2.43). Hence, this Courant-Isaacson-Rees scheme
behaves monotonically.
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2.6. The Lax’s 1954 single-step explicit scheme.

2.6.1. Construction. In 1954 Lax [13] presented a scheme that over-
comes the stability problem due to the Schmidt’s scheme, we found in
the Eq. (2.18), in exactly the same way as Du Fort and Frankel evaded
the stability problem due to the Richardson’s scheme in the case of the
heat equation (see Paper I):

pit (T
T 1 <%> Tgn+1 —Tr,
At T oAz (2:50)

i.e. by taking the space average of T7* at (z;,1").

2.6.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T" at points other than point (x;,t") in the scheme in a Taylor
series around the value 77" at that point (z;,t"), i.e. we substitute Egs.
2.6 and 2.13 of Part I in Eq. (2.50), gives

oT o  (Ax)* 0T  At&*T v (Ax)*0°T  (Al)?0°T
o "Vor T oAt o 202 6 08 6 op
(2.51)
We thus see from that equation, which is not yet the modified equation,
that the first term on the right hand side goes to infinity when At — 0

independently of Az and therefore the Lax’s scheme of calculation is
inconsistent for any value of AAQ? (i.e. it converges to that of a parabolic
equation). However, if a time step At ~ Az is used we then achieve first
order accuracy. That is, the Lax’s scheme is conditionally consistent
and we must now to be careful in choosing the time step to assure the
consistency of the scheme (if we want to use it, for its other virtues). We
should realize the reason for their non consistency is that Lax changed
the method after he (really Schmidt) has made the Taylor expansions in
the usual way, the same as the Du Fort-Frankel scheme (see Paper I).
We furthermore provide here the evolution equation with only space
derivatives, i.e. the modlﬁed equation. In order to achieve it, we firstly
find expressions for 2 8t2 I and %th, and secondly (be careful with this) for
%, ;;;Tdt and 8‘1&2, by differentiating Eq. (2.51); all of which we use
systematically to eliminate the time derivatives in it. This implies that
the modified equation associated with the Lax’s scheme, the equation of
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the grid function from Lax’s difference equation, is:
8_T+U8_T: (1—6’2) (Ax)? 0°T (C’—C’3) (Az)3 33T
ot ox 2 At Ox? 3 At Ox3
N (4 —4C? — 6C4) (Ax)* AT
24 At Ox*

which is one of two ways to next not only calculate the local error but
also estimate the stability.

(2.52)

+0((Ax)?),

2.6.3. Stability. We secondly now analyze the stability using the von

Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each

term a term in Eq. (2.50) we get the following complex valued, growth

factor associated with the Lax’s scheme:

1 . ) 1 ) .

G = 5(6”““—1—6_”““)—EC(elkm—ke_’kM) = cos (kAz)—i C'sin (kAx),
(2.53)

whose magnitude component takes the form

|G|* = cos? (kAx) + C?sin? (kAx), (2.54)

which since cos? (kAz) < 1 and sin® (kAz) < 1, satisfies Eq. (2.16) of
Part I if

(1-C)>0. (2.55)

Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.28), which acts as a
diffusion term, must always be positive for 77" not to be inflamed in time;
i.e. has to satisfy Eq. (2.55), implying that the Lax’s scheme is indeed
conditionally stable.

2.6.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Lax’s modified equation (2.52) through fifth
order we see that the damping term of the numerical solution is not unity
as it should be but it is given by

1—C?\ (Ax)? , 4—-4C*—-6C*\ (Az)!
- A 1A
eXp{ ( 2 ) N H( 24 ) AR t}’
(2.56)

which is shown in left panel of Fig. 14.
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Lax scheme Lax scheme
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FIGURE 14. Damping factor (approximated to the five-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific C'
number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

0A = \/COS2 (kAz) + C2sin® (kAx) — 1, (2.57)

and is shown in right panel of Fig. 14 where we find, in agreement with
the left panel remembering this is obtaining by truncating the numerical
solution up to the five-order derivatives, that it increases outside the sta-
bility region, is 0 for C'= 1, and both decreases rapidly (typical for first
order schemes) from 0 at kAxz = 0 (for consistency reasons) to C'—1 (see
Eq. (2.57)) at kAz = 7/2 and increases to 0 again at KAz = 7, i.e. the
Lax’s scheme has no diffusion error for the highest frequency. The same
as the Laasonen’s scheme, although its effect is much greater than that of
the Laasonen’s scheme. Up to now, it is furthermore worth emphasizing
that this error takes its maximum value for the approximately uniformly
dissipative Courant-Isaacson-Rees scheme.

On the other hand, by applying the discrete Fourier series grid solu-
tion of Eq. (2.1) of Part I to the Lax’s modified equation (2.28) truncated
up to the five-order derivatives, then we see that the dispersive term is

given by
, 1—C?%\ (Ax)® ,
exp {zk‘ {x—vt— ( 3 ) A7 k t]}, (2.58)

implying the dispersive phase velocity shown in Fig. 15. We now find a
numerical propagation speed higher than the physical one, but shifting
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closer to the physical one with increasing C'"s. This leads to the striking
fact that the instantaneous velocity flips sign once a stability-threshold
is reached, when the numerical speed reaches exact value. The same as
the Richardson’s scheme, although in backwards. More on this later.

Lax scheme

— C€=0.100
— C=0250
—— C€=0.500

C=0.750
0.25 C=1.000
—— C=1250

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kax

FIGURE 15. The phase velocity of the Lax’s solution (ap-
proximated to the five-order derivatives), Eq. (2.58) vs.
frequency in radians, for specific C' values which are dis-
tinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Lax’s growth factor, Eq.
(2.53), is given by

¢ = arctan (;&2;) = arctan (—C'tan (kAx)), (2.59)
which we show in the left panel of the Fig. 16.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 16 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Lax’s scheme plotted against the phase angle for
specific C' values.

To shed more light on the stability issue is again key to consider
left panel in Fig. 16. On one hand, as opposed to the surprising short
waves, concerning the long waves we observe that they reproduce the
behavior typically observed in Fig. 15. For C' < 1 waves have lagging
shift, everywhere ¢ > 0, showing that the numerical solution leads
the physical solution; but shift closer to the d¢ = 0, once the stability
threshold is reached, when the relative phase shift error flips sign and
the Fourier modes will have leading shift. In other words, the (long)
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waves reach the physical speed independently of the grid velocity %;
however, the greater the grid velocity, the greater the variation it has to
undergo to equal the physical velocity and so the greater the spurious
bias we observe in the right panel in Fig. 16. On the other hand, the
nonintuitive opposing behavior we find concerning the still stable short
waves is consistent with the mentioned consistency restriction because
for these waves At has to be much too small for consistency, which leads
to the low accuracy observed in the right panel in Fig. 16 vs. Eq. (2.59);
that is to say, the smaller the C' value, the faster propagation speed and
the poorer accuracy as showed in the rigth panel in Fig. 16, that is to
say, the short waves are incorrectly propagated.

Lax scheme Lax scheme

C=1.000
— C=1250 2
- Analytical
-3.01 —— Numerical [

0:0 0:5 l.‘U 115 210 215 3:0 0:0 015 110 1:5 210 215 3?0
kax kaAx
FIGURE 16. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

Finally, we also deduce that Eq. (2.50) reduces to Tj”Jrl =10, if
C' = 1, the exact solution (see A), as we can also see in Fig. 16. The
same as the Courant-Isaacson-Rees scheme. However, any other C' suffers
a poor, even-odd decoupling because Tj"Jrl only depends on 77, ; and 77" ;
which is clearly visible in Table 1. The same as the Richardson’s scheme.

2.6.5. Monotonicity. Finally, from the Eq. (2.38) the coefficients of
the new solution are 1(1—C) and 1(1—C). That is, they are all positive
in the stability region. Hence, this Lax’s scheme is monotone.

2.7. The Lax-Richtmyer 1956 single-step semi-explicit scheme.
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2.7.1. Construction. In 1956 Lax and Richtmyer [14] considered the
same discretization as Lax did, but evaluating the space derivative for-
wards in time; i.e.,

Tt _ <;Tfn+1> n+1 n+1
J 2 _ 7—"7—‘,-1 j—jj—l (2 60)
At 2Ax ' '
Hence this scheme is not based on Taylor series expansions, either.
Table 1 emphasizes that Eq. (2.60) is time-implicit. The same as the
Crank-Nicolson scheme.

2.7.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T at points other than point (z;, ") in the scheme in a Taylor
series around the value 77" at that point (z;,¢"™), i.e. we substitute
Egs. 2.6, 2.12 and 2.13 of Part I in Eq. (2.26), gives
2 2 93 2 93

(9_T+ GT_AtﬁT_v(Ax)8T_(At)8T+‘“. (2.61)

ot Ox 2 0t? 6 0z 6 ot
We then see from that equation, which is not yet the modified equation,
that the right hand side vanishes when At — 0 and Az — 0 and therefore
the Lax-Richtmyer scheme of calculation is consistent. In addition, this
side goes to zero as the first power of At and the second power of Ax,
implying that the scheme is of first order accuracy in time and second
order accuracy in space as well.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modiﬁed equation. In order to achieve it, we firstly
find expressmns for a_ and 2 t3T, and secondly (be careful with this) for
3T 9T

5 Ho and a 2(%, by differentiating Eq. (2.61); all of which we use
systematically to eliminate the time derivatives in it. This implies that
the modified equation associated with the Lax-Richtmyer scheme, the
equation of the grid function from Lax-Richtmyer difference equation, is:

or T (1+C2> (A2)* T (c+203> (Az)? O°T

ot Vs 5 At 0a? 6 At 0a°
) . (2.62)
N —24+6C*\ (Ax) 8T—|—(9((A 9)
24 IND S

which is one of two ways to next not only calculate the local error but
also estimate the stability.
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2.7.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.60) we get the following complex valued, growth
factor associated with the Lax-Richtmyer scheme:

cos (kAx)
= 2.63
1+ iC'sin(kAz)’ (2:63)
whose magnitude component takes the form
cos? (kAx)
G| = <1 2.64
Gl \/1 + C?sin® (kAxr) ’ (264)

which satisfies Eq. (2.16) of Part I and thus the Lax-Richtmyer scheme
is stable for the advection equation.

Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.28), which acts as
a diffusion term, always is positive implying that the Lax-Richtmyer
scheme is indeed unconditionally stable.

In fact, this property of being stable turns out to be true for all
purely implicit schemes. That said, if not for stability, for accuracy
we cannot use a large time step. To clearly see it, note the ratio of
the Lax-Richtmyer numerical damping rate (from Eq. (2.28) of Part I,
e~ wnumAl — G| to the exact damping rate (the unity) is

Wnum —In COS (k?AQ?)
w V14 O?sin? (kAx)

) = (-1 %) (hAr)? + O((kA)');

(2.65)
which show us that for, e.g., C' = 0.5 the error on the damping rate is as
much as about the exact damping rate (Eq. (2.65) is on average about

1).

2.7.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Lax-Richtmyer modified equation (2.28)
truncated up to the five-order derivatives we see that the damping term
of the numerical solution is not unity as it should be but it is given by

oo ([ (50) B g (F20C) 0]
(2.66)
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which is shown in left panel of Fig. 17.

Lax — Richtmyer scheme Lax — Richtmyer scheme

FIGURE 17. Damping factor (approximated to the five-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific C'
number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

cos? (kAx)
0A = -1 2.67
\/1 + C?sin® (kAz) (267)

and is shown in right panel of Fig. 17 where we find, in agreement with
the left panel remembering this is obtaining by truncating the numerical
solution up to the five-order derivatives, that it both decreases rapidly
(typical for first order schemes) from 0 at kAx = 0 (for consistency
reasons) to —1 (see Eq. (2.67)) at kAz = 7/2 and increases rapidly to
0 again at kAx = m; i.e. the Lax-Richtmyer scheme is not uniformly
dissipative. It has no diffusion error for the highest frequency. The same
as the Lax’s scheme but much worse.

On the other hand, by applying the discrete Fourier series grid solu-
tion of Eq. (2.1) of Part I to the Lax-Richtmyer modified equation (2.62)
truncated up to the five-order derivatives, then we see that the dispersive
term is given by

3
exp{z’k [z—vt+1(0+203)wk2t]}, (2.68)
6 At
implying the dispersive phase velocity shown in Fig. 18. We find a
numerical propagation speed smaller than the physical one, but moving
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away from the physical one with increasing C’s. This leads to the fact
that the instantaneous velocity does not flip sign because the numerical
speed never reaches exact value, implying the Lax-Richtmyer scheme
don’t have instability issue. More on this later.

Lax — Richtmyer scheme

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kax

F1GURE 18. The phase velocity of the Lax-Richtmyer so-
lution (approximated to the five-order derivatives), Eq.
(2.68) vs. frequency in radians, for specific C' values which
are distinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Lax-Richtmyer growth
factor, Eq. (2.63), is given by

¢ = arctan (;;((é))) = arctan [—C'sin (kAz)], (2.69)
the same as the Laasonen’s scheme which we show in the left panel of
the Fig. 19.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 19 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Lax-Richtmyer scheme plotted against the phase
angle for specific C' values.

We find that the (dispersive) behavior is identical to that of the Laa-
sonen’s scheme and similar to that using the Crank-Nicolson scheme.
Indeed, the left panel of Fig. 19 shows us that for all values of C we
have leading shift, the relative phase error is less than 0, indicating a nu-
merical propagation speed smaller than the physical one; but shift away
from the line d¢p = 0 (see the left panel of Fig. 19), implying again the
Lax-Richtmyer scheme don’t have instability issue, either. However, let’s
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not forget that the dissipative behavior is much worse than that using
both the Laasonen’s and the Crank-Nicolson schemes.

2.7.5. Monotonicity. Although the Lax-Richtmyer scheme is semi-impli-
cit the convex combination technique still fails to estimate its monotonic-
ity because Tj”Jrl depends on space average of T7', i.e. in practice it de-
pends only on 77'. Therefore we must demonstrate Eq. (2.31) of Part
I from Eq. (2.60) (see Table 1); which is, indeed, exactly the same as
we did for the Laasonen’s scheme. Hence, the Lax-Richtmyer scheme is
monotone and does not introduce oscillations.

Lax — Richtmyer scheme Lax — Richtmyer scheme

— C€=0.100 N
—— C€=0250 ‘\ 0.6
. — C=0.500

C=0.750

C=1.000
— C=1250
————— Analytical
_3.04 — Numerica I

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
kax kAx

FIGURE 19. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

2.8. The Wendroft’s 1958 single-step semi-explicit scheme.

2.8.1. Construction. In 1958 Wendroff [15] was the first to come up
with an alternative to the Crank-Nicolson scheme by averaging between
n and n+1 time levels the following semi-discretized, forward approxi-
mation (to advection equation)

L (oT;  OTj T —Tj
=2 = — 2.70
2 ( o o \Tar ) (2.70)
to obtain the following compact scheme:
n-+1 n n+1 n n—+1 n+1 n n
V(o meem (e Ty
2 At At 2 Ax Az '
(2.71)

Hence this scheme is not based on Taylor series expansions, either.
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Table 1 emphasizes that Eq. (2.71) is time-implicit. The same as the
Crank-Nicolson scheme.

2.8.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. The same as the
Crank-Nicolson scheme, we must reduce the number of indexes in it be-
fore raising and/or lowering them. Thus, in this situation we rewrite Eq.

(2.71) as Tj”fllﬂ — T+ C’T;Hrl/2 - C'Tf_"Lll/2 = 0. Next, substituting
each value of T' at points other than point (z;_1 9, ""/2) in this equation
in a Taylor series around the value T} at that point (z;_1/2, t"1/2) | gives
oT T C(Az)? T (A1) 0T
or  or_ _Claw) _ (&) T (2.72)
ot ox 24 At Ox? 24 0Ot3

We then see from that equation, which is not yet the modified equation,
that the right hand side vanishes when At — 0 and Az — 0 and therefore
the Wendroff’s scheme of calculation is consistent. In addition, this side
goes to zero as the second power of At and the second power of A,
implying that the scheme is of second order accuracy in both time and
space.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly
find expressions for %;%’ and secondly (be careful with this) for %, by
differentiating Eq. (2.72); all of which we use systematically to eliminate
the time derivatives in it. This implies that the modified equation as-
sociated with the Wendroft’s scheme, the equation of the grid function
from Wendroft’s difference equation, is:

or | OT _(C*—C\ (Ax)* 0T
ot or  \ 2 N

which is one of two ways to next not only calculate the local error but
also estimate the stability.

+ O((Ax)Y), (2.73)

2.8.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.71) we get the following complex valued, growth
factor associated with the Wendroft’s scheme:

1-C+(14C)elika)
1+ CH4 (1= C)el-ikba)
i.e. the amplitudes of the Fourier components neither increases nor de-
crease as time evolves, which is a desirable property because is in line

~1, (2.74)
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with the lack of diffusion of the general analytical solution (Eq. (2.18) of
Part I). Hence, the Wendroff’s scheme is stable even at large time step
size, although (be careful with this) this will not necessarily give accurate
solution. This is because, the non-explicit schemes use the information
from neighboring cell of the current time step to find the solution. The
same as the Crank-Nicolson scheme.

Alternatively, the Hirt’s method is another way to obtain this. The
first term on the right hand of Eq. (2.73) is odd (which acts as a dispersive
term) and there is no even-order derivatives, as we have just obtained.
That way, Wendroft’s scheme is stable, neutrally stable. The same as
the Crank-Nicolson scheme.

2.8.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Wendroff’s modified equation (2.73) we see
that there is only odd-order derivatives, implying the damping term of
the numerical solution is clearly unity (see Eq. (2.27) of Part I) which is
shown in left panel of Fig. 20.

Wendroff scheme Wendroff scheme

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
kAx kAx

F1GURE 20. Damping factor and relative amplitude error
as a function of phase angle or frequency, in radians, for
specific C' number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

§A =0, (2.75)

as shown in right panel of Fig. 20. The same as the Richardson’s scheme.
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On the other hand, by applying the discrete Fourier series grid so-
lution of Eq. (2.1) of Part I to the Wendroff’s modified equation (2.73)
truncated up to the five-order derivatives, then we see that the dispersive
term is given by

exp {z k [a: ot + (032; C) (AA‘?S 2 t} } (2.76)

implying the dispersive phase velocity shown in Fig. 21. We now find
a numerical propagation speed higher than the physical one, but decel-
erating and shifting closer to the physical one with increasing C"s. This
leads to the striking fact that the instantaneous velocity flips sign when
the numerical speed reaches exact value, while stays stable (Eq. (2.74)).
This effect is the same as that in the Lax’s scheme but much smaller,
however staying stable even if the instantaneous velocity changes sign.
More on this later.

Wendroff scheme

125 /

e _\

—— C=0.100
—— C=0.250
—— C=0.500

C=0.750
0.25 C=1.000
— C=1250

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kax

F1GURE 21. The phase velocity of the Wendroft’s solution
(approximated to the four-order derivatives), Eq. (2.76)
vs. frequency in radians, for specific C' values which are
distinguished by line colors.

Equivalently, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Wendroft’s growth factor,
Eq. (2.74), is given by

¢ = arctan (;((Cé))) = arctan

20 (@))], (2.77)

2
1—C? tan (%

which we show in the left panel of the Fig. 22.
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Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 22 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Wendroft’s scheme plotted against the phase
angle for specific C' values.

To shed even more light on the stability issue is key to consider left
panel in Fig. 22 where we find, in perfect agreement with findings from
21, that for C' < 1 the waves have lagging shift, everywhere d¢ > 0 (see
the left panel of Fig. 22), showing that the numerical solution leads the
physical solution; but shift closer to the line ¢ = 0, once the physical
solution is reached for C' = 1, when the relative phase shift error flips sign
and the Fourier modes will have leading shift. In other words, the fast
waves decelerate and reach the physical speed independently of the grid
velocity ﬁ—f; however, the greater the grid velocity, the greater the vari-
ation it has to undergo to equal the physical velocity and so the greater
the spurious bias with the fast high frequency waves we observe in the
right panel in Fig. 22, that is to say, the shorter wave length, the faster
propagation speed, and faster still the smaller the C' value. Now, how-
ever, the Fourier harmonics do not drive the solution to instability since,
unlike either the Richardson’s or Lax’s cases, the Wendroft’s scheme is
nonexplicit which is dissipative in nature. In fact, the Wendroff’s scheme,
unlike the Richardson’s scheme, has no computational mode; and, unlike
Lax’s scheme, is neutrally stable. Hence, let us say that the Wendroft’s
scheme is not only neutrally but marginally stable.

Wendroff scheme Wendroff scheme

— C=0.100
— C=0.250
1597 — C€=0.500
C=0.750
C=1.000
104 — C=1.250

0.0 —_—

— €=1250
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0:0 0:5 l.‘O 115 210 215 3.‘0 0:0 015 l‘.O 1:5 210 215 3?0
kAx kAx
FIGURE 22. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.



REVISITING FINITE DIFFERENCE ... 113

Finally, we also deduce that Eq. (2.71) reduces to T}"* = T, if
C' =1, the exact solution (see A); as we can also see in Fig. 22. Indeed,
for C = 1 we have no dispersion error (see Fig. 22). The same as the
Courant-Isaacson-Rees scheme.

2.8.5. Monotonicity. Finally, from the Eq. (2.38) the coefficients of
the new solution are 1 — C' and 1 + C'. That is, they are all positive
if 1 — C > 0; which only happens in the non-marginal stability region
mentioned earlier. Hence, the Wendroff’s scheme is nonmonotone.

2.9. The Lax-Wendroff 1960 single-step explicit algorithm.

2.9.1. Construction. In 1960 Lax and Wendroff [16] looked for a (sec-
ond order) accurate scheme but not by introducing additional terms that
compensated for the bias caused by the second order spatial discretiza-
tions, as both Richardson and especially Crank and Nicolson did, but in
a general way. Their derivation rests on the Taylor series expansion (up
to the second-order derivatives) of the numerical solution 7" around
the node (z;, t"), Eq. (2.6) of Part I, and the replacement of its time
derivatives by space derivatives by using both the linear (for now this is
the way it is in this Part IT), differential equation we wish to solve and
its derivative,

o*T o*T
W = 'U2 w, (278)

so that they invented:

., =1 1 T, =21+ T"
AL e A It 7L A2 2 2L J J+1
J J ! 2Ax + 2< ) (Az)?
which is the explicit scheme reformulated in Table 1 using Eq. (2.2) and
which however is also based on Taylor series expansions.

(2.79)

2.9.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T" at points other than point (x;,t") in the scheme in a Taylor
series around the value 77" at that point (z;,t"), i.e. we substitute Egs.
2.6 and 2.13 of Part [ in Eq. (2.79), gives

aT n aT v(Az)2PT  (At)? 93T n

- V— = — —

ot ox 6 O3 6 ot
We then see from that equation, which is not yet the modified equation,

that the right hand side vanishes when At — 0 and Ax — 0 and therefore
the Lax-Wendroff scheme of calculation is consistent. In addition, this

(2.80)
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side goes to zero as the second power of At and the second power of Ax,
implying that the scheme is of second order accuracy in both time and
space, as expected by construction.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly

find expressions for %%T, and secondly (be careful with this) for %37? and

%, by differentiating Eq. (2.80); all of which we use systematically
to eliminate the time derivatives in it. This implies that the modified
equation associated with the Lax-Wendroff scheme, the equation of the

grid function from Lax-Wendroff difference equation, is:

or T <C3 - C) (Az)? 3T (—02 +C4) (Az)t 0T

o Yor T\ 6 N g At ozt
_C— 5034607\ (Ax)? T )
* ( 120 ) At oz T OB,

(2.81)

which is one of two ways to next not only calculate the local error but
also estimate the stability.

2.9.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.79) we get the following complex valued, growth
factor associated with the Lax-Wendroff scheme:

G =1-C?[1 —cos(kAz)] — i Csin (kAx), (2.82)
whose magnitude component takes the form
IG|> =1~ C?*(1 — C*)[1 — cos (kAx)]?, (2.83)
which satisfies Eq. (2.16) of Part I if
(1-C)>0. (2.84)

Alternatively, the modified equation is another way to obtain this.
The first term on the right hand of Eq. (2.81), the next-leading-order
contribution, is odd which acts as a dispersive term (there is no second-
order dissipative derivatives), has to be positive for T} not to be prop-
agated in the opposite direction; i.e. has to satisfy Eq. (2.84). That
way, the Lax-Wendroff scheme is conditionally stable. Equivalently, the
fourth-order dissipative term must always be positive for 77" not to be
inflamed in time; i.e. has to satisfy Eq. (2.84), implying that the Lax-
Wendroff scheme is indeed conditionally stable.
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2.9.4. Accuracy. We thirdly investigate how accurate, both in magni-
tude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Lax-Wendroff modified equation (2.81)
truncated up to the five-order derivatives we see that the damping term
of the numerical solution, which is one order of magnitude smaller than
its dispersion, is not unity as it should be but it is given by

exp K_CQ; 04) (AA‘Z)4 Iz At} (2.85)

which is shown in left panel of Fig. 23.
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FIGURE 23. Damping factor (approximated to the six-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific C'
number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

6A =+/1—C2%(1 - C2)[1 — cos (kAx)]2 — 1, (2.86)

as shown in right panel of Fig. 23. The Fig. 23 shows that it increases
outside the stability region, is 0 for C' = 1, and decreases a little from 0 at
kAz = 0 (for consistency reasons) when the frequency increases. How-
ever, we do not expect the rapid decrease typical for first order explicit
schemes which found so far with the Courant-Isaacson-Rees scheme but
we now observe, as expected from a second order scheme which is this one
by Lax and Wendroff, that the region where d A ~ 0 is much larger than
that found in the Courant-Isaacson-Rees scheme; i.e. the Lax-Wendroff
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amplitude error decreases more slowly with increasing frequency than
Courant-Isaacson-Rees amplitude error. Also, again, we emphasize that
the dissipation error in this Lax-Wendroff scheme is two orders of mag-
nitude smaller than that in a typical scheme with nonzero second order
derivative like the Courant-Isaacson-Rees scheme. We also find that the
strongest damping occurs at C' = /0.5 because this value maximizes
C?(1 — C?), which is relevant to the kinetic regimes that follow.

On the other hand, by applying the discrete Fourier series grid solu-
tion of Eq. (2.1) of Part I to the Lax-Wendroff modified equation (2.81)
truncated up to the sixth-order derivatives, then we see that the (third
order) dispersive term is given by

_ 3 3
exp{ik {x—vt—i—(c C’)(Aw) k*t

6 At

- (c+5f230— GC4> (AA:?"’ kAt} } (2.87)

implying the dispersive phase velocity shown in Fig. 24.

Lax — Wendroff scheme

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kAx

F1GURE 24. The phase velocity of the Lax-Wendroff solu-
tion (approximated to the six-order derivatives), Eq. (2.87)
vs. frequency in radians, for specific C' values which are
distinguished by line colors.

Surprisingly enough, in a manner similar to, but not the same as,
that which occurs in the Courant-Isaacson-Rees scheme, here we find that
the instantaneous velocity flips sign (approximately) twice (remembering
this is obtaining by truncating the numerical solution up to the sixth-
order derivatives), when C' ~ 0.5, in fact when C' = V0.5, and when
C' = 1. For C' < 0.5 we find a numerical propagation speed smaller than
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the physical one, but moving closer to the physical one with increasing
C’s. This leads to the very striking fact that the instantaneous velocity
flips sign once a threshold is reached, when the numerical speed reaches
exact value at C' ~ 0.5, but while the damping is strong enough in the
corresponding shorter waves to prevent their unstable numerical growth.
Then for C' 2 0.5 the trend reverses and hence a new shorter waves cycle
begins having a numerical propagation speed larger than the physical
one, but moving again closer to the physical one with increasing C’s.
Again this leads to that the instantaneous velocity flips sign once the
same threshold is again reached, when the numerical speed again reaches
exact value at C' = 1, which is nondamping implying, the late reversing,
instability, when the speed of the longer waves exceeds the exact value.
More on this later.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Lax-Wendroff growth
factor, Eq. (2.82), is given by

B JG)\ —C' sin (kAx)
¢ = arctan (W) = arctan L ~ 21— cos (kD)) || (2.88)

which we show in the left panel of the Fig. 25.
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FIGURE 25. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 25 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Lax-Wendroff scheme plotted against the phase
angle for specific C' values.
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Again in a manner similar to, but not the same as, that which occurs
in the Courant-Isaacson-Rees scheme, now the right panel of Fig. 25
shows us, in agreement with findings from 24, that for C' < /0.5 waves
have leading shift but shift closer to the d¢p = 0 up to a half-dissipation
threshold is reached when we have no dispersion error approximately, the
relative phase shift error flips sign and the Fourier modes have just the
opposite, i.e. lagging shift. Hence only short waves with C' < v/0.5 are
poorly resolved, quasi-stationary waves. Nevertheless, for /0.5 < C < 1
the modes stay in the stable regimen and continue shifting closer to the
d¢ = 0 (see the right panel in Fig. 25) up to the stability threshold
is reached when we have no dispersion error exactly, the relative phase
shift error flips sign again and the Fourier modes have again leading shift
but now driving the solution to instability since, unlike the case when
C = \/ﬁ, when C' = 1 the diffusion exactly vanishes and we do reach
the analytic solution. In fact, we finally deduce that Eq. (2.79) reduces
to TP = T7 | if C' = 1, the exact solution (see A). The same as the
Courant-Isaacson-Rees, Lax’s and Wendroft’s schemes and also like the
Richardson’s scheme. Having said all of this, the irregular phase advance
found in Fig. 25 (compare this Figure to Fig. 13) is the consequence of
the slow dissipation typical for second order explicit schemes as already
found in Fig.23.

2.9.5. Monotonicity. Finally, from the Eq. (2.38) the coefficients of
the new solution are 1(C?+ C), 1 — C? and 1(C? — C); the last of which
is negative if Eq. (2.84) is satisfied. That is, in the consistency region
this Lax-Wendroff scheme behaves non-monotonically, unless C' is unity.

2.10. The Molenkamp’s 1967 single-step implicit algorithm.

2.10.1. Construction. In 1967 Molenkamp [17] considered the same dis-
cretization as Courant, Isaaccson and Rees did (Eq. (2.38)), but evalu-
ating the space derivative forwards in time; i.e.,
n—+1 n n+1 n—+1
(e O o i

A7 —v N ) (2.89)

which is reformulated in Table 1 using Eq. (2.2).

2.10.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T at points other than point (z;, ") in the scheme in a Taylor
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series around the value T;‘H at that point (x;,t"*1), i.e. we substitute
Egs. 2.6 and 2.13 of Part I in Eq. (2.89), gives

or oT  vAzd*T Atd*T

— v = et

ot ox 2 Ox? 2 0t?
We then see from that equation, which is not yet the modified equa-
tion, that the right hand side vanishes when At — 0 and Az — 0 and
therefore the Molenkamp’s scheme of calculation is consistent. In addi-
tion, this side goes to zero as the first power of At and the first power
of Az, implying that the scheme is of first order accuracy in both time
and space as well. Indeed, this result further verifies what would other-
wise be expected because the way this scheme is based on Taylor series
expansions.

We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly
ﬁ‘r;d expressigns for %275, and secondly (be careful with this) for %, g;aTw
a?ﬁ:gt and 8‘1352, by differentiating Eq. (2.90); all of which we use sys-
tematically to eliminate the time derivatives in it. This implies that the
modified equation associated with the Molenkamp’s scheme, the equation
of the grid function from Molenkamp’s difference equation, is:

(2.90)

or  or

or ' ox
C(CPH O\ (A0 PT  [(—C—3C 203 (Ax)® T \
_( > ) At 8x2+( 6 ) At gz TOUAD)),

(2.91)
which is one of two ways to next not only calculate the local error but
also estimate the stability.

2.10.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.89) we get the following complex valued, growth
factor associated with the Molenkamp’s scheme:

1

G — 2.92
14 C — C cos (kAx) +iCsin (kAz)’ (2.92)
whose magnitude component takes the form
1
IG)? <1, (2.93)

- 1+2C(1+C)[1—cos(kAz)] —
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which satisfies Eq. (2.16) of Part I and thus the Molenkamp’s scheme is
stable for the advection equation, as every other implicit scheme.

Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.91), which acts as a
diffusion term, always is positive implying that the Molenkamp’s scheme
is indeed unconditionally stable.

2.10.4. Accuracy. We thirdly investigate how accurate, both in mag-
nitude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Molenkamp’s modified equation (2.91) trun-
cated up to the fourth-order derivatives we see that the damping term of
the numerical solution, which is one order of magnitude larger than its
dispersion, is not unity as it should be but it is given by

exp K_C; 02> <AA“;)2 ;2 At], (2.94)

which is shown in left panel of Fig. 26.
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FIGURE 26. Damping factor (approximated to the four-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific C'
number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

e 1
B V1+2C (1+C)[1— cos (kAz)]

1, (2.95)
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as shown in right panel of Fig. 26. This panel shows that it decreases
rapidly (typical for first order schemes) from 0 at kAz = 0 (for con-
sistency reasons) when the frequency increases, i.e. the Molenkamp’s
scheme is uniformly quite dissipative.

On the other hand, by applying the discrete Fourier series grid solu-
tion of Eq. (2.1) of Part I to the Molenkamp’s modified equation (2.91)
truncated up to the fourth-order derivatives, then we see that the dis-
persive term is given by

2 3 3
exp{z’k [x—vt—i— (C+3C6 20 ) (AA? kzt]}, (2.96)

implying the dispersive phase velocity shown in Fig. 27. We now find a
numerical propagation speed smaller than the physical one, but moving
away from the physical one with increasing C’s. This leads to the fact
that the instantaneous velocity does not flip sign because the numerical
speed never reaches exact value, implying the Molenkamp’s scheme don’t
have instability issue. More on this later.

Molenkamp scheme
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 25 3.0
kax

FIiGURE 27. The phase velocity of the Molenkamp’s so-
lution (approximated to the four-order derivatives), Eq.
(2.96) vs. frequency in radians, for specific C' values which
are distinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Molenkamp’s growth fac-
tor, Eq. (2.92), is given by

¢ = arctan M = arctan —Csin (kAz)
B RG)) 14+ C(1 —cos(kAx)) |’
which we show in the left panel of the Fig. 28.

(2.97)
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Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 28 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Molenkamp’s scheme plotted against the phase
angle for specific C' values.

Molenkamp scheme Molenkamp scheme
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FIGURE 28. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

We find that the (dispersive) behavior is similar to but more pro-
nounced than those using the Laasonen’s, Crank-Nicolson and Lax-Richt-
myer schemes. Indeed, the left panel of Fig. 28 shows us that for all
values of C' we have leading shift, the relative phase error is less than 0,
indicating a poorly resolved, numerical propagation speed smaller than
the physical one; but shift away from the line d¢ = 0 (see the left panel
of Fig. 28), implying again the Molenkamp’s scheme don’t have insta-
bility issue, either. Also, let us not forget that the dissipative behavior
is much worse than those of the Crank-Nicolson and Laasonen’s schemes
and similar to that of Lax-Richtmyer scheme.

2.10.5. Monotonicity. Since the Molenkamp’s scheme is implicit the
convex combination technique fails to estimate its monotonicity. There-
fore we must demonstrate Eq. (2.31) of Part I. From Eq. (2.89) (see
Table 1) we also get

—CTM + T + CT ) =T, (2.98)
which subtracted from Eq. (2.89) gives
T T = T T — O (T = TP+ C (1 = T4 (2.99)
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and if in this equation we take the absolute value of both sides, use the
triangle inequality on the right-side and sum the two sides over all j then
we get Eq. (2.31) of Part I. Hence, the Molenkamp’s scheme is monotone
and does not introduce oscillations.

2.11. The Lerat’s 1979 single-step implicit algorithm.

2.11.1. Construction. In 1979 Lerat [18] considered the same discretiza-

tion as Lax and Wendroff did (Eq. (2.79)), but evaluating the space

derivatives forwards in time; i.e.,
n+1 n—i—l

" g 1 Tnj—l _ QT?’H—I + Tn+1
AL o A¢ Jj+1 Jj—1 - 2 7j-1 J
j j VoA 2

(At)*v (Ar)?

+ O ((At)2 - % - (Aa;)2) :

(2.100)

which is reformulated in Table 1 using Eq. (2.2).

2.11.2. Consistency and order of accuracy. We firstly analyze the
consistency of the scheme using the Hirt’s method. Substituting each
value of T' at points other than point (z;,¢"™) in the scheme in a Taylor
series around the value TJ?"“rl at that point (x;,t"*1), i.e. we substitute
Egs. 2.8, 2.12 and 2.13 of Part I in Eq. (2.100), gives
aor oT  v*At*T  Atd*T v(Ax)?2 T (A2 0°T
o Yor T 2 o2 208 6 o 6 0B
(2.101)
We then see from that equation, which is not yet the modified equation,
that the right hand side vanishes when At — 0 and Az — 0 and there-
fore the Lerat’s scheme of calculation is consistent. In addition, this side
goes to zero as the first power of At and the second power of Az, imply-
ing that the scheme is of first order accuracy in time and second order
accuracy in space as well. Indeed, this result further verifies what would
otherwise be expected because the way this scheme is based on Taylor
series expansions.
We furthermore provide here the evolution equation with only space
derivatives, i.e. the modified equation. In order to achieve it, we firstly

find expressions for %QTQT and %%T, and secondly (be careful with this) for

gjgt, 8Zz€t and %, by differentiating Eq. (2.101); all of which we use

systematically to eliminate the time derivatives in it. This implies that
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the modified equation associated with the Lerat’s scheme, the equation
of the grid function from Lerat’s difference equation, is:

or 9T  (Ax)® 0T (—C— 503) (Az)? 8T

+0((Az)"),

(2.102)
which is one of two ways to next not only calculate the local error but
also estimate the stability.

ol 2
Ve T A S T 6 At Dzb

2.11.3. Stability. We secondly now analyze the stability using the von
Neumann’s method. Substituting a term of Eq. (2.1) of Part I into each
term a term in Eq. (2.100) we get the following complex valued, growth
factor associated with the Lerat’s scheme:

1

¢= 14 C? — C? cos (kAx) + i Csin (kAz)’

(2.103)

whose magnitude component takes the form

1
2
G = (1+ C2 — C2 cos (kAw))?2 + C? sin? (kAx) =1, (2.104)
which satisfies Eq. (2.16) of Part I and thus the Lerat’s scheme is stable
for the advection equation, as every other implicit scheme.
Alternatively, the modified equation is another way to obtain this.
The first (even) term on the right hand of Eq. (2.102), which acts as a
diffusion term, has to be positive for 7} to be damped in time; which
is fulfilled implying that the Lerat’s scheme is indeed unconditionally
stable.

2.11.4. Accuracy. We thirdly investigate how accurate, both in mag-
nitude and in phase, the numerical solution is using the Hirt’s and von
Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution
of Eq. (2.1) of Part I to the Lerat’s modified equation (2.102) trun-
cated up to the fourth-order derivatives we see that the damping term of
the numerical solution, which is one order of magnitude larger than its
dispersion, is not unity as it should be but it is given by

_ 2 (Ax)?
exp |[—C AL k= At|, (2.105)

which is shown in left panel of Fig. 29.
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FIGURE 29. Damping factor (approximated to the four-
order derivatives) and relative amplitude error as a func-
tion of phase angle or frequency, in radians, for specific C'
number values.

Alternatively, since the exact growth factor is equal to unity, the
relative amplitude error (Eq. (2.29) of Part I) is given by

A= ! —1,  (2.106)

V(1402 — 02 cos (kAx))? + C? sin? (kAx)

as shown in right panel of Fig. 29. This panel shows that it decreases
rapidly (typical for first order schemes) from 0 at kAx = 0 (for consis-
tency reasons) when the frequency increases, i.e. the Lerat’s scheme is
uniformly dissipative. The same as that which occurs in the Molenkamp’s
scheme.

On the other hand, by applying the discrete Fourier series grid so-
lution of Eq. (2.1) of Part I to the Lerat’s modified equation (2.102)
truncated up to the fourth-order derivatives, then we see that the dis-
persive term is given by

exp {zk [x—mwr (C+503) (Az) k%] } (2.107)

6 At

implying the dispersive phase velocity shown in Fig. 30. We now find a
numerical propagation speed smaller than the physical one, but moving
away from the physical one with increasing C’s. This leads to the fact
that the instantaneous velocity does not flip sign because the numerical
speed never reaches exact value, implying the Lerat’s scheme don’t have
instability issue. More on this later.
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Lerat scheme
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FIGURE 30. The phase velocity of the Lerat’s solution (ap-
proximated to the four-order derivatives), Eq. (2.107) vs.
frequency in radians, for specific C' values which are dis-
tinguished by line colors.

Alternatively, from the von Neumann’s complementary analysis point
of view, the numerical phase component of the Lerat’s growth factor, Eq.
(2.103), is given by

B JG)\ —C'sin (kAx)
¢ = arctan (%(G)) = arctan L O = cos (kAn)] | (2.108)

which we show in the left panel of the Fig. 31.

Therefore, since the exact phase speed is the —v, we present in the
right panel of the Fig. 31 the numerical relative phase error (see Eq.
(2.30) of Part I) of the Lerat’s scheme plotted against the phase angle
for specific C' values.

We find that the (dispersive) behavior is quite similar to but even
more pronounced as that which occurs in the Molenkamp’s scheme. In-
deed, the left panel of Fig. 31 shows us that for all values of C' we have
leading shift, the relative phase error is less than 0, indicating a poorly
resolved, numerical propagation speed smaller than the physical one; but
shift away from the line d¢ = 0 (see the left panel of Fig. 31), implying
again the Lerat’s scheme don’t have instability issue, either.

2.11.5. Monotonicity. Since the Lerat’s scheme is implicit the convex
combination technique fails to estimate its monotonicity. Therefore we
must demonstrate Eq. (2.31) of Part I. From Eq. (2.100) (see Table 1)

we also get
—05C* T — 0.5 C T + T + CP T
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FIGURE 31. Left: the numerical phase component. Right:
the numerical relative phase error as a function of phase
angle or frequency, in radians, for specific C' number values.

—05C* T +05CTIH =T, (2.109)
which subtracted from Eq. (2.100) gives
T — T =T =T +0.5 C* (T — T +0.5 C (T — T
+0.5 C*(TTH =T — 0.5 C (7 — 17+
- (T - T
(2.110)

and if in this equation we take the absolute value of both sides, use the
triangle inequality on the right-side and sum the two sides over all j then
we get Eq. (2.31) of Part I. Hence, the Lerat’s scheme is monotone and
does not introduce oscillations.

3. The numerical tests

The critical properties of the depending on time instantaneous grid
function for a basic example and proxy for the presence of unsmooth
initial conditions are explored in this experimental Section, as testbed
for detailed fundamentals and practice quantitatively predicted in the
previous section. In particular, equipped with a analytical solution, we
critically assess the performance, in terms of stability, accuracy, and also
convergence, of different numerical solution schemes to solve the diffusion.
Comparisons with each other are finally commented.

More specifically, the illustrative application we use is the Lagrange-
Charpit 1776 analytical solution of the representative and challenging
Cauchy problem described in the A on bounded domain size L = 1,
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initial condition given in Eq. (A.1) and speed v = 1 arbitrary units,
which deals with evolving discontinuous derivatives in solution quantity.
So, by choosing a mean best-fit resolution, the full parameter space of
every discretization model, summarized in Table 2, is validated (or oth-
erwise) and compared to exact solution and other numerical solutions
with special emphasis on graphical exposition.

C=025kAx=5% C=0.25kAx=m1

00 —— —_— — o= (] 001 — — — — ———. -
-0.2 l |:| -0.2 I |:|
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scheme scheme

(A) Mid frequency modes (B) High frequency waves
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8 3
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FiGURE 32. Amplitude errors of different schemes for
some values of the dimensionless Courant-Friedrichs-Lewy
number, Eq. (2.2) (i.e. different discretisations). In the
diffusion, upper panels we show the Schmidt’s scheme by
its black bar.

For the sake of comparison, we represent both dissipation and disper-
sion errors representative of the schemes for two specific C' values in Figs.
32 and 33, respectively. Although we know the numerical error depends
on the precise combination of time stepping scheme and finite difference,
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the marked differences between each method and its implicit version are
outstanding just by looking at the Schmidt’s bars vs. Laasonen, Lax’s
bars vs. Lax-Richtmyer, Courant-Isaccson-Rees bars vs. Molenkamp and
Lax-Wendroff bars vs. Lerat.

C=025kAx=5% C=0.25kAx=mn
3.0 3.0 —

Sl I N0 |

R CN laa CR Llax LR w w M Ler R CN Laa CIR Lax LR w w M Ler
scheme ~ scheme

(A) Mid frequency modes (B) High frequency waves
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N

(¢) Mid frequency modes (D) High frequency waves

FI1GURE 33. Phase errors of different schemes for some val-
ues of the dimensionless Courant-Friedrichs-Lewy number,
Eq. (2.2) (i.e. different discretisations). In the diffusion,
upper panels we show the Schmidt’s scheme by its black
bar.

Finally, we remind that included in our sample is a no go condition
using the Schmidt’s scheme and some problematic strictures with respect
to the usage of both the Richardson’s scheme and Lax-Richtmyer scheme
and with the Lax’s scheme, as well as the inability to use a large time
step in all cases. This latter is for the Courant-Friedrichs-Lewy condition
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in explicit cases, accuracy in nonexplicit cases and additionally consis-
tency in Lax’s case. In this context and with all these central questions
in mind, to gain a better understanding of different subtleties creating
their signatures, before anything else, we demonstrate how to perform
frequentist scheme comparison.

3.1. Resolution tests. The present tests aim to constrain the At pa-
rameter by performing a frequentist error minimization either opening or,
in order to resolve the initial condition well, keeping fixed a sufficiently
small grid spacing Az = 1072 units.

We compute the heat flow in the unit domain [0, 1] using the Richard-
son’s approximation which likewise lacks its lowest time level evolving its
required first time step solution from the simplest Courant-Isaccson-Rees
scheme.

To this end, Fig. 34 shows the residuals’ behavior obtained for the non
unstable, explicit schemes, namely, Richardson’s, Courant-Isaacson-Rees,
Lax’s and Lax-Wendroff schemes and Fig. 35 shows the same for both
semi-implicit (namely, Crank-Nicholson, Lax-Richtmyer and Wendroff’s
schemes) and implicit (namely, Laasonen’s, Lerat’s and Molemkamp’s
schemes) schemes. We use the simplest Schmidt’s scheme to compute
the lowest time level required by the Du Fort-Frankel three-level ap-
proximation. The codes naturally take into account the initial condition
either in the first iteration, in case of the first row explicit schemes, or in
the constant matrix, in other cases.

Our investigation reveals four results of utmost importance. First,
the stable schemes (see Fig. 35) produce higher error with the use of
larger values of C'. This would seem in apparent contradiction to uncon-
ditionally stable non-explicit schemes at first glance.

Second, the second-order schemes, namely, Richardson’s, Lax-Wendroff,
Crank-Nicholson and also Wendroff’s schemes, are more accurate but not
about one order of magnitude more accurate simply a factor of about
three better.

Third, the Crank-Nicholson scheme exhibits the smallest variation
with C.

Fourth, most of schemes, except Courant-Isaacson-Rees, Lax’s and
Lax-Richtmyer schemes where the opposite is true, produce less error
with a lower value of time step. Furthermore, we also find that this
result holds for a finer spatial resolution. For example, let’s take the
case shown in Fig. 36 corresponding to Lax-Wendroff scheme with 200
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FIGURE 34. Errors of explicit schemes for some values
of the dimensionless Courant-Isaacson-Rees number, Eq.
(2.2) (i.e. different scheme resolution).

gridpoints, i.e. with twice the resolution of the one computed with the
same scheme and shown in the last panel of Fig. 34.

Fifth, the schemes that are exact for a C' = 1, namely, Richardson’s,
Courant-Isaacson-Rees, Lax’s, Wendroff’s and Lax-Wendroff, are not no-
ticed.

Here we offer the following four respective explanations.

e First, the solution to this puzzle is principally the strong dis-
persion suffered by these schemes. Indeed, this result is a conse-
quence of the behavior illustrated in Figs. 7, 16, 19, 22, 28 and 31
each. In addition to this, the Lax-Richtmyer scheme stands out
with the worse error, which is due to its much stronger dissipation
(see Fig. 17).
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Crank — Nicolson scheme with Ax =0.01 at t=0.6s
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FicurE 35. The same as Fig. 34 but for non-explicit
schemes including both semi-implicit ones (the first three)

and implicit ones (the last three).

e Second, Godunov’s oscillations we already explained in Section
2.2.4 in Part 1. In the second order schemes always appear non-
physical oscillations, especially for our initial Gaussian data (see

A) as we shall discuss shortly.
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Lax — Wendroff scheme with Ax =0.005 at t=0.6s

— C=0.10
— C=025
— C=0.50
C=075
C=1.00

0.05 &
5 0.00 4
—0.05 v

0.0 0.2 0.4 0.6 0.8 1.0
X

FIGURE 36. The same as Fig. 34 but for Lax-Wendroff
scheme with 200 gridpoints.

e Third, here we observe the evidence in Fig. 7 that the Crank-
Nicholson relative phase is very little affected by the value of C,
along with their non-damping amplitude.

e Third, transport errors we now explain for the first time. We
observe in Table 1 that there are three schemes where the evo-
lution of the solutions is markedly assymetrical. They are the
Courant-Isaacson-Rees, Lax’s and Lax-Richtmyer schemes. For
example the value of 77" has no influence on T;‘H in the Lax’s
and Lax-Richtmyer schemes, which causes the schemes to lose
stability and the accuracy condition (C' = 1 for all of them) ends
up dominating the evolution. In this way they show the counter-
intuitive behavior we find here. In addition to this, the Lax’s and
Lax-Richtmyer schemes stand out with the worse errors, which is
due to their much stronger dissipation of well resolved waves (see
Figs. 14 and 17).

Moreover, in addition to them, Richardson’s, Wendroft’s and
Molenkamp’s schemes are weakly assymetrical but, still, it is not
enough for poor accuracy to dominate the propagation and get
worse with larger C' values.

e Fourth, we are finding that an appreciable error from the dis-
cretization of the initial Gaussian data is present in our applica-
tion. More details will be given in Section 3.4.

Consequently, based on this graphical statistical evidence and at the
same time with the awareness of both the stability and accuracy limi-
tations and with the Lax’s consistency limitation, we agree to carefully
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choose the simultaneous most accurate discretization of C' = 0.5 from vi-
sual inspection of Figs. 34 and 35, i.e. a time increment of half a order of
magnitud smaller than the acceptable spatial resolution of 1072 units. In
fact, resolving the abrupt initial and boundary conditions require time to
reach described accuracy, and potentially explains our choice. In other
words, this subsection explains why the precision of the solution does
not only depend on the numerical resolution, but also on the tempera-
ture quantity gradient as will be checked later.

The advantage of this natural approach is that all schemes can be
used on an equal footing. The caveat is that individual peculiarities are
averaged out. Nonetheless, as previously anticipated, Fig. 35 illustrates
that the stability benefit of the non-explicit schemes, consisting only in
that we may use (and save computing time with) a large At parameter,
does not keep against this differencial equation. The same as in Part 1.

3.2. Stability tests. We are now able to extend that Section in three
directions. We firstly demonstrate the stability of different schemes.

3.2.1. Unstable scheme. Fig. 4 shows certainly that the Schmidt’s
scheme amplify errors for all the Courant-Isaacson-Rees number values,
i.e. 0A is everywhere larger or equal 0.

Schmidt scheme with Ax=0.01 at t=0.6s
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FIGURE 37. The same as Fig. 34 but for Schmidt’s (1924)
scheme.

Likewise Fig. 37 shows the unacceptable residuals computed with it
as a consequence of its instability, as explained in Section 2.2.

Finally, in proof of agreement with Section 2.2, the upper panel of
Fig. 38 shows certainly that the Schmidt’s scheme amplifies errors and
diverges very rapidly. The onset of instability occurs before t = 0.05 units
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and then only gets worse. The size of the prediction error, measured in
RMSE or standard deviation of the residuals (lower panel of Fig. 38), is
about two orders of magnitude greater than acceptable even at this early
stages. We also find that it makes no difference with any other choice of
the grid size. Therefore, we cannot use the Schmidt’s scheme to solve any
hyperbolic partial differential equation (see third paper in the series).

Schmidt scheme with At=0.005, Ax =0.01
. O

—— Analytical
e Numerical
— t=0.05
— t=0.6

o 0=0.08
1 o 0=364

0.0 0.2 0.4 0.6 0.8 1.0
X

F1cURE 38. The Schmidt’s (1910) scheme. Top panel:
T9% (violet open circles: o) and TP (blue circles: o)
for the Schmidt’s (1924) scheme with Az = 1072 and
At = 5 x 1073, The corresponding solid lines reproduce
T(x, 0.05) (violet) and T'(x, 0.6) (blue) from Eq. (A.2).
Bottom panel shows residual temperatures for the grid
points. The legend in the lower panel displays the Root
Mean Squared Error, RMSE, for each time.

3.2.2. Conditionally stable, explicit schemes. Fig. 11 reveals the
conditional stability of the Courant-Isaacson-Rees scheme. The same
is shown by Figs. 14 and 23 in the cases of Lax’s and Lax-Wendroff
schemes, respectively.

Fig. 34 clearly show the same, including the Richardson’s scheme—
which has no diffusion error as shown in Fig. 1. Specifically, we observe
that all these explicit schemes start to wildly oscillate when we apply
them with C' > 1, i.e. they cannot be used when C' > 1. Even the
Richardson’s scheme with C' = 1 shows spurious oscillations due to its
computational (numerical) mode.

3.2.3. Stable, non-explicit schemes. Fig. 8 reveals the unconditional
stability of the Laasonen’s scheme. The same is shown by Figs. 17, 26
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and 29 in the cases of Lax-Richtmyer, Molenkamp’s and Lerat’s schemes,
respectively.

Fig. 35 clearly show the same, including both the Crank-Nicolson and
Wendroft’s schemes—which have no diffusion errors as shown in Figs. 5
and 20.

3.3. Accuracy tests. We secondly demonstrate the accuracy of dif-
ferent schemes. To achieve this, we present in Fig. 39 the results
we obtain for the first order schemes, namely, Courant-Isaacson-Rees,
Lax’s, Lax-Richtmyer, Laasonen’s, Molemkamp’s and Lerat’s schemes.
Fig. 40 presents the results obtained for the second order schemes,
namely, Crank-Nicholson, Lax-Wendroff, Lax-Richtmyer and Wendroft’s
schemes.

According to what we already have worked in Section 3.1 we use the
parameters Ax = 1072 spatial units and At = 5 x 1072 temporal units
(already done in Fig. 38).

3.3.1. First order schemes. Our investigation reveals six important
results. First, no scheme shows oscillations.

Second, all the schemes show a sharp decrease in amplitude. Specif-
ically, the Lax’s and Molemkamp’s numerical solutions are the most
strongly damped. Interestingly, the same as the Lax-Richtmyer scheme.

Third, the Lax’s numerical solution leads the exact solution. Sur-
prisingly, it seems to be the same with the Lax-Richtmyer scheme but a
closer look to it shows that it is not so.

Fourth, the Courant-Isaacson-Rees, Lax’s and Lax-Richtmyer numer-
ical solutions are assymetric.

Fifth, there is hardly difference between explicit and implicit schemes.
For example, let us compare the Courant-Isaacson-Rees scheme vs. Molem-
kamp’s scheme on the one hand, but also the Lax’s scheme versus Lax-
Richtmyer scheme on the other hand.

Sixth, the Laasonen’s scheme is the more accurate scheme, followed
by the Lerat’s scheme and, interestingly enough but not too surprisingly,
followed in third place by the Courant-Isaacson-Rees scheme.

Here we offer the following six respective explanations.

e We are showing the Godunov’s theorem [5]. The linear mono-
tone schemes for the advective transport can be only first order
schemes whilst the second order schemes always present artificial
wiggles into their solutions.
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FI1GURE 39. The same as Fig. 38 but for all of first order
schemes in the sample, including the Lax’ scheme.

e This is due to the selectively dissipative behaviors found in Figs.
8, 14 and 17 and, likewise, to the uniformly dissipative behaviors
of Figs. 11, 26 and 29. In fact, we have found (see also both the
Table 2 and the Fig. 32) that the highest dissipation coefficient
is that in the Lax-Richtmyer scheme, followed by the Lax’s and
Molemkamp’s schemes in order of intensity, as is evident in the



REVISITING FINITE DIFFERENCE ... 139

Fig. 39. The Molemkamp’s scheme is almost indistinguishable
from the Lerat’s scheme, but its dissipation is stronger.

e We find that the numerical solution of almost all schemes lag be-
hind the exact solution. The reason is that the relative dispersion
error is mostly negative as we have found in the above Section.
Indeed, we found in Eq. (2.58) and showed in the Fig. 15 that
the numerical solution of the Lax’s scheme is the only first-order
solution leading the exact solution, implying what is observed on
the left panel in the second row in this Fig. 39 due to his leading
phase error.

e We are finding the transport errors, we put forward just above,
in these three schemes.

e If, with the help of Table 2, we compare the two types of schemes
of the same order of accuracy, e.g. Courant-Isaacson-Rees scheme
vs. Molemkamp’s scheme, then we observe the two coefficients,
of dissipation and of dispersion, are very similar. Likewise, the
same is true when we compare the Lax’s scheme and its implicit
version, the Lax-Richtmyer scheme.

e This is due to these two Laasonen’s and Lerat’s schemes have
the lowest dissipation of all first-order schemes (see also their
dissipation coefficients in the Table 2). What naturally happens is
that the Lerat’s dispersion error is greater than that of Laasonen.

Here it is worth emphasizing the superiority of the von Neu-
mann’s method to discern the stronger dissipation of the Lax-
Richtmyer scheme versus the Laasonen’s scheme despite their sim-
ilarity according to the Hirt’s method, at least up to low order.

Also, we note here that the Courant-Isaacson-Rees diffusion
error achieves its maximum value for C' = 0.5, which makes our
choice a less favorable choice to it.

3.3.2. Second order schemes. Our investigation reveals five important
results. First, all the schemes produce (spurious) oscillations in their
numerical solution.

Second, the second-order schemes are not dissipative and, conse-
quently, more accurate.

Third, Wendroff’s numerical solution leads the exact solution.

Fourth, there is hardly difference between explicit and semi-explicit
schemes. For example, let’s compare Lax-Wendroff scheme vs. Crank-
Nicholson scheme.

Fifth, the Lax-Wendroff scheme is the more accurate scheme.
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FI1GURE 40. The same as Fig. 38 but for all of second
order schemes of the sample.

Here we offer the following five respective explanations.

e They are the consequence of the non monotonicity of these two
schemes. We are demonstrating the Godunov’s theorem [5] (com-
pare Fig. 39 to Fig. 40).

Due to symmetry, higher-order even derivatives cancel out to
eliminate algorithmic dissipation. Compare Fig. 39 to Fig. 40 to
confirm their accuracies.

As we have emphasize just above, the reason is that its relative
dispersion error is negative. As found in Eq. (2.76) and showed in
Fig. 21, the Wendroft’s relative phase, which is the only second-
order solution leading the exact solution, strongly impacts the
observed numerical solution on the left panel in the second row in
this Fig. 40. Note the extra wiggles that appear in the Wendroff’s
solution leading the exact curve due to his phase advance error is
a leading one.
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e [f with the help of Table 2, we also compare the two types of
schemes of the same order of accuracy, e.g. Lax-Wendroff scheme
vs. Crank-Nicholson scheme, then we observe the two coefficients,
of dissipation and of dispersion, are very similar (recall the Lax-
Wendroff scheme is of fourth order dissipation).

e This is due to that this Lax-Wendroff scheme have the lowest
dispersion of all second-order schemes while it is not widely dissi-
pative using the chosen C' = 0.5 value (see also their coefficients
in Table 2, which still is good at putting any possible inaccuracy
right. The Richardson’s and Wendroft’s schemes, for their parts,
suffer from inevitable inaccuracies. As for the Crank-Nicolson
scheme, it presents excessive dispersion.

3.4. Convergence tests. Lastly, we explore the error convergence of
different schemes. In Part I we already have explained that consistency
means that the error at each time step goes to zero as the grid is refined
and in Section 2 we have estimated the rate that this one-step error goes
to zero. Here we investigate global (not local over one time step) rate of
convergence, i.e. the overall approximation error.

Fig. 41 re-presents the RMSE errors of both first- (undashed) and
second-order (dashed) schemes obtained in Figs. 39 and 40. As we
already have discussed, it is unsurprising that no second-order scheme
is dissipative. But it is also true that none of them is monotone, as
Godunov show us. This is what we are finding and happens without
contradiction for our non-smooth numerical solutions.

To investigate the matter further, let us emphasize that Figs. 39 and
40 present the numerical solutions to a problem for which the analytical
solution, shown in A, is a Gaussian function with discontinuous derivative
at = 8 units (¢ = 0.6 units), i.e. is nonmonotone. In other words, we
analyze an analytical Gaussian beam composed of a linear combination
of Fourier modes of arbitrarily high frequency and, as we have demon-
strated, we do by using numerical schemes just able to poorly resolve a
finite number of these modes, up to those in the range 0 < k Az < 7/2.
Indeed, all ten schemes resolve very poorly their high frequency Fourier
harmonics. This fact is very significant in those problems where the initial
and boundary condition is a non-smooth continuous function rendering
their convergence limited. Additionally, all six first-order schemes also
smear the non-smooth analytical solution on the one hand, and all four
second-order schemes also introduce additional algorithmic oscillations
on the other hand. Consequently, we do not obtain for none of them
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FiGURE 41. Bar plot with the RMSE errors. The blue
bars represent explicit schemes, the yellow bars repre-
sent fully implicit schemes, the red bars represent semi-
explicit schemes and the dashed bars indicate second-order
schemes. It suggests that the dashed bars remain viable.

their order of accuracy when we compute the rate of convergence which
we do in [>norm error (Eq. (2.5) of Part I), and show in Fig. 42. In
fact, we observe in Fig. 42 that the second-order schemes are converging
at about first order, while the first-order schemes are converging at much
less than first order.

Note this finding does not disprove the Lax-Richtmyer theorem [14],
because it is only concerning well-posed problems.

Convergence of the error
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F1GURE 42. Convergence of the error plot for the trav-
eling Gaussian wave, which we use to rank schemes. As
found, the benefit of second order schemes is much more
noticeable on a finer grid than on coarser grids.



REVISITING FINITE DIFFERENCE ... 143

Finally, although we have focused our study to understand and test
both accuracy of each of the eleven low order finite difference schemes
and the fact that they do not always reach desired convergence rate as
well as their stabilities, the convergence studies carried out and showed
in Fig. 42 (which agrees with Fig. 41) also lead to better ability to
discriminate between schemes. Specifically, Fig. 42 compares the [2-norm
at different grid resolutions. As interestingly found and emphasized, the
benefit of high order schemes is much more noticeable on a finer grid
than on coarser grids. Besides we find performance achieved with the
Lax-Wendroff scheme to be comparable to or better than performance
with rest schemes in our sample, specifically the one with the decayless
Crank-Nicholson scheme, the Lax-Wendroff scheme has the advantage
of being more tractable numerically. In conclusion, the Lax-Wendroff
oscillatory scheme of finite difference method provides the most successful
description of advection equation of the A, and thus this result should
be taken into consideration during the integration of the full heat-like
equation subjected to some instabilities (future papers in the series will
discuss on it); together with the corresponding result from Part I for the
Schmidt’s scheme.

4. Concluding remarks

The scope of this Part II is exactly to complete the analysis of Part
I by studying the advective transport. To achieve this goal, we select
and discuss a complete and unbiased sample of schemes for the advec-
tion parabolic partial differential equation constituted by all those up to
second-order in both time and space; which are of topical current inter-
est. We also put to precisely test such sample considering the Lagrange-
Charpit problem in the presence of differentiable initial perturbations
with discontinuous derivative; which appear in a wide variety of physical
contexts. In other words, different schemes include both single-step and
three-time-level, both explicit or hierarchical and non-explicit or mono-
lithic, both consistent and inconsistent, both stable and unstable, both
first-order accuracy and second-order accuracy, and both convergent and
divergent; while each scheme includes discretizations which obviously are
both reliable or robust and inaccurate or uncertain. In fact, we perform
a complete study of each behavior and its implication on the error es-
timation of each scheme. Moreover, we empirically validate as well as
illustrate all of this phenomenology by computation.
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To be more precise, the classical Richardson’s [6], Schmidt’s [8], Crank-
Nicolson [9], Laasonen’s [11], Courant-Isaacson-Rees [12], Lax’s [13], Lax-
Richtmyer [14], Wendroft’s [15], Lax-Wendroff [16], Molenkamp’s [17] and
Lerat’s [18] schemes for a advection type transport equation have been
coherently revised at low and (which is a vital aspect to capture the
correct behavior of the system in the regions where the space scale is
very small) high wavenumbers by exploiting the power of both the re-
verse Taylor’s analysis [3] and the discrete Fourier’s analysis [4], even
though these associated formalisms are not physically equivalent. In
fact, this distinction is important because we demonstrate these mode
high wavenumbers (smallest scales) always remain poorly constrained.
At the same time, the Courant-Friedrichs-Lewy condition have been re-
interpreted as the instantaneous velocity sign flip with no damping in an
explicit scheme. For more clarity, we homogeneously test all the schemes
on an equal spatiotemporal discretization by performing an a priori min-
imization best-fit. In fact, we highlight the benefits of this framework. In
addition, we use all of them to probe the Lax-Richtmyer theorem [14] and
also the Godunov’s theorem [5], which has in practice a significant effect
on advective transport. Our main conclusions are summarized below.

(1) The pioneering Richardson’s numerical scheme for approximating
the solution to advection linear equation is a one step three time
level scheme which naturally presents a unphysical computational
mode propagating in opposite direction. The Richardson’s solu-
tion presents no damping of Fourier modes but additionally shows
moderate numerical dispersion which does however not resolve the
high frequency Fourier harmonics. Nevertheless, the first bene-
fit is not as desirable as it may seem, as it does not prevent his
conditional instability. We also reveal spurious oscillations in the
numerical solution. In particular, it is shown that the Richard-
son’s numerical solution that use the constraint C' = 1 reduces to
the exact outcome of the linear type differential equation.

(2) The simplest Schmidt’s numerical scheme for advection differen-
tial equation unfortunately presents a positive damping coeffi-
cient, and therefore is invalid for advective transport in general.
We even provide numerical simulations of a test case based on
this scheme.

(3) The innovative Crank-Nicolson numerical scheme for the advec-
tion equation is also dissipation free but additionally shows mod-
erate numerical dispersion which does however not resolve the
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high frequency Fourier harmonics. Nevertheless, we show that
Crank-Nicolson solution exhibits only one acceleration regime
with respect to C' away from the exact solution, explaining its
stability. Such benefit, generally speaking, can be only observed
in non-explicit solutions of advection-like equations. We also re-
veal spurious oscillations in the numerical solution. This scheme,
however, remains a good approximation when applies to an usual
nonmonotone initial-value problem for the linear advection equa-
tion.

The curious Laasonen’s numerical scheme presents moderate damp-
ing and additionally shows moderate numerical dispersion which
does however not resolve the high frequency Fourier harmon-
ics. Nevertheless, we show that Laasonen’s solution exhibits only
one acceleration regime with respect to C' explaining its stabil-
ity; in stark contrast with his explicit counterpart, the Schmidt’s
scheme. We also reveal, on the other hand, no spurious oscilla-
tions in the numerical solution.

The impressive Courant-Isaacson-Rees scheme presents a rapid
uniform damping, which is able to explain their two acceleration
with respect to C' regimes until their conditional instability. Ad-
dditionally, we show that Courant-Isaacson-Rees solution exhibits
only moderate numerical dispersion; however, it is both selective
during its acceleration regimen and uniform in its deceleration
regimen, i.e. which does not resolve the high frequency Fourier
harmonics except for C' > 0.5. We also reveal, on the other hand,
no spurious oscillations in the numerical solution. In particular,
it is finally shown that the Courant-Isaacson-Rees numerical so-
lution that use C' = 1 reduces to the exact outcome of the linear
type differential equation; however, any other C value suffers a
poor decoupling.

The intriguing Lax’s numerical scheme presents a quadratic con-
sistency restriction which produces a very poor numerical disper-
sion; which is in fact both atypical and anomalous for the faster
and higher frequency visible Fourier harmonics. Additionally, we
also show that Lax’s solution exhibits strong selective damping
which does however not prevent his conditional instability. We
also reveal spurious oscillations in the numerical solution. Fi-
nally, it is particularly shown that the Lax’s numerical solution
that use C' = 1 reduces to the exact outcome of the linear type
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differential equation; however, any other C value also suffers a
poor decoupling.

(7) The peculiar Lax-Richtmyer numerical scheme presents strong se-
lective damping and additionally shows moderate numerical dis-
persion which does however not resolve the high frequency Fourier
harmonics. Nevertheless, we show that Lax-Richtmyer solution
exhibits only one acceleration regime with respect to C' explaining
its stability; in dramatic contrast with his explicit counterpart,
the Lax’s scheme. We also reveal, on the other hand, no spurious
oscillations in the numerical solution.

(8) The surprising Wendroff’s numerical scheme does not create damp-
ing and presents only one acceleration regime with respect to
C towards the exact solution. However, we demonstrated that
this does not prevent his marginal stability because his (com-
putationally diffusive) nonexplicit nature. Additionally, we also
demonstrated that Wendroff’s solution exhibits strong uniform
dispersion which also implies very low accuracy in the faster and
higher frequency visible Fourier waves. We also reveal spurious
oscillations in the numerical solution. Finally, it is particularly
shown that the Wendroff’s numerical solution that use C' = 1
also reduces to the exact outcome of the linear type differential
equation.

(9) The ingenious Lax-Wendroff numerical scheme presents an uni-
form damping, which is able to explain their two acceleration
regimes with respect to C: the one in lower but close to C' = v/0.5,
and another until their conditional instability. We also show that
Lax-Wendroff solution exhibits only moderate numerical disper-
sion; however, it is both selective for C' < V0.5 and uniform
for C > /0.5, i.e. which does not resolve the high frequency
Fourier harmonics except for C' > /0.5. We also reveal spurious
oscillations in the numerical solution. Finally, it is particularly
shown that the Lax’s numerical solution that use C' = 1 reduces
to the exact outcome of the linear type differential equation. This
scheme also is the preferred approximation when apply it to an
usual nonmonotone initial-value problem for the linear advection
equation.

(10) The strange Molenkamp’s numerical scheme presents very strong
uniform damping and additionally shows strong numerical disper-
sion which does not resolve the high frequency Fourier harmonics.
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Nevertheless, we show that Molenkamp’s solution exhibits only
one acceleration regime with respect to C' explaining its stability;
in contrast with his explicit counterpart, the Courant-Isaacson-
Rees scheme. We also reveal, on the other hand, no spurious
oscillations in the numerical solution.

(11) The elaborated Lerat’s numerical scheme presents strong uniform
damping and additionally shows very strong numerical dispersion
which does however not resolve the high frequency Fourier har-
monics. Nevertheless, we show that Lerat’s solution exhibits only
one acceleration regime with respect to C' explaining its stability;
in sharp contrast with his explicit counterpart, the Lax-Wendroff
scheme. We also reveal, on the other hand, no spurious oscilla-
tions in the numerical solution.

Despite its simplicity, this has however been a challenging project
which contains numerous different scenarios. Indeed, the focus of the
present paper was in rich variety of physical effects and numerical arti-
facts only little explored in the original literature, which are expressly
relevant for high accuracy or data systematics. Overall, our findings, we
believe, should help researchers entering the field, while contributing to
the ongoing efforts to refine our understanding of the first order spatial
derivative and its properties applicable in an accompanying paper where
(mass or thermal) diffusion appears together with (heat and mass) ad-
vection. In fact, in third paper of the series we shall continue working the
theory of difference schemes with both the physical help of the Fourier
decomposition and the equivalent mathematical clarity of the theory of
differential equations. Afterward we shall consider the non-linear case.
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Appendix A. The Lagrange-Charpit 1776 traveling Gaussian
wave analytical solution as a test case

We begin with the one dimensional well posed (in the sense of Hadamard)
problem given by the first order partial differential equation

{%:—v% ze(0,L),t>0,

2 Al
T(x, 0) = e 200@=02% 2 (0, L). (A1)
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in an enclosed spatial domain subject to some initial and boundary con-
ditions. Specifically, we imagine that the heat energy from a smooth
initial source flows or moves in a rod of length given only due to the
flow determined by a constant velocity field. That is, we start with a
Gaussian peak-shaped wave at the position x = 0.2 of the domain as a
possible model for the heat source. We refer to this motion of thermal
energy by the mechanism of moving mass in the rod as heat transfer.

Eq. (A.1) is the prototypical hyperbolic differential equation.

This test case guarantees the suitability of the formulation of the
analytical solution.

Of course, this benchmark problem represents an idealized integrable
situation but capture the main characteristics and numerical difficulties
for hyperbolic equations. In Paper III we consider a number of additional
issues, including a variable transport velocity, a source term, nonlineari-
ties and higher dimensions.

Using the method of characteristics, we obtain the following solution
to our initial value problem:

T(x,t) = o200 (z—0.2—vt)? (A.2)

which merely translates the initial data at speed v as time progresses.
We also obtain Eq. (A.2) using the standard method of separation of
variables and Fourier transform.

Additionally, we represent this explicit solution in Figure 43 to graph-
ically visualize how the initial profile translates to the right at constant
speed without changing shape — which has to be simulated by the nu-
merical solutions.
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