DOUBLE SUMUDU INTEGRAL TRANSFORM ON TIME SCALES WITH APPLICATIONS
Bhagyashri N. Todkari, Shrikisan B. Gaikwad
University of Tetova, Str.101, Sllatino
Tetovo - 1201, Republic NORTH MACEDONIA
Department of Mathematics,
New Arts, Commerce and Science College, Ahmednagar, Savitribai
Phule Pune University, Maharashtra, India
Abstract.In this paper, we introduce an extension of the double Sumudu transform on time scales. The fundamental properties of the double Sumudu transform are established, including its existence, shifting property, transform of the derivative, and convolution theorem. The double Sumudu transform is demonstrated to be an effective and efficient technique for solving partial and partial-integro dynamic equations on time scales.
How
to cite this paper?
Source: International Journal of
Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 1
References
[1] H. A. Agwa, F. M. Ali and Adem KIlicman A new integral transform on time scales and its applications, Advances in Difference Equations, 2012(60) (2012), 1-14.
[2] R. A. Agrwal, M. Bohner, D. O’Regan and A. PetersonDynamic equations on time scales: a survey, Journal of Computational and Applied Mathematics, 141, (2002), 1-26.
[3] M. Bohner and A. Peterson, The Laplace transform and Z-transform:unification and ex- tension, Methods and Applications of Analysis, 9(1) (2002), 155-158.
[4] M. Bohner and A. Peterson, Dynamic Equation on time scales: An introduction with applications, Birkh¨auser, Boston, (2002), Mass USA.
[5] M. Bohner and G. SH. Guseinov, The convolution on time scales, Abstr. Appl. Anal., 2007 (2007), 1-24.
[6] T. Cuchta and S. Georgiev, Analysis of bilateral Laplace transform on time scales with applications, Int. J. Dyn. Syst. Differ. Equ., 11, 3-4, (2001), 255-274.
[7] H. Eltayeb and A. Kilicman, On double Sumudu transform and double Laplace transform, Malays. J. Math. Sci., 4(1), (2010), 17-30.
[8] H. Eltayeb, A. Kilicman, and B. Fisher, On multiple convolutions and time scales, Math. Prob. Engrg., 2013 (2013), 1-7.
[9] S. Hilger, Special functions, Laplace and Fourier transform on measure chains, Dynam. Systems. Appl., 8(1999), 471-488.
[10] R. Khandelwal, P. Choudhary, and Y. Khandelwal, Solution of fractional ordinary dif- ferential equation by Kamal transform, International Journal of Statistics and Applied Mathematics,3(2) (2018), 279-284.
[11] A. Kamal and H. Sedeeg, The new integral transform ”Kamal Transform”, Advances in Theoretical and Applied Mathematics, 11(4) (2016), 451-458.
[12] T. G. Thange and S. M. Chhatraband, Laplace-Sumudu Integral Transform On Time Scales, South East Asian J. of Mathematics and Mathematical Sciences, 19 (1), (2023), 91-102.
[13] T. G. Thange and S. M. Chhatraband, A new α- Laplace transform on time scales, J ˜na¯na¯bha, 53(2), (2023), 1-10.
[14] T. G. Thange and S. M. Chhatraband, On Nabla Shehu Transform and Its Applications, Journal of Fractional Calculus and Applications, 15(1), (2024), 1-13.
[15] T. G. Thange and S. M. Chhatraband, New general integral transform on time scales, J. Math. Model., 12(4), (2024), 655-669.
[16] T. G. Thange and S. M. Chhatraband, Double Shehu transform for time scales with ap- plications, Journal of Classical Analysis, 25(1), (2025), 75-94.
[17] M. J. Tchueche and N. S. Mbare, An application of double Sumudu transform, Applied Mathematical Science, 1(1), (2007), 31-39.
o Home
o Contents
(c) 2025, Diogenes Co, Ltd.; https://www.diogenes.bg/ijam/