DOI: 10.12732/ijam.v38i2.5
AN RSA CRYPTOSYSTEM BASED ON
NEW SEQUENCES FROM THE GENERALIZED
JACOBSTHAL NUMBERS AND GENERALIZED
PELL NUMBERS
Elahe Mehraban 1,2,3, T. Aaron Gulliver 4,
Evren Hincal 1,2,3
1 Mathematics Research Center
Near East University
TRNC, Mersin 10, 99138 Nicosia, TURKEY
2 Department of Mathematics
Near East University
TRNC, Mersin 10, 99138 Nicosia, TURKEY
3 Faculty of Art and Science
University of Kyrenia
TRNC, Mersin 10, 99320 Kyrenia, TURKEY
4 Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, V8W 2Y2, CANADA
Abstract. In this paper, we define two new sequences using the generalized Jacobsthal
numbers and generalized Pell (p, i)- numbers. First, sequences are obtained from the characteristic polynomials of these numbers and then sequences are derived from the Hadamard-type product of these polynomials. The determinants and combinatorial and exponential representations of these new sequences are given. As an application, they are used in an RSA cryptosystem.
How
to cite this paper?
DOI: 10.12732/ijam.v38i2.5
Source: International Journal of
Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 2
References
[1] A. Agarwal, S. Agarwal, B. K. Singh, Algorithm for data encryption &
decryption using Fibonacci prime, J. Math. Control Sci. Appl., 6, No 1 (2020),
63-71.
[2] Y. Akuzum, O. Deveci, The Hadamard-type k-step Fibonacci sequences in groups, Commun. Algebra, 48, No 7 (2020), 2844-2856.
[3] D. Brod, A. Michalski, On generalized Jacobsthal and Jacobsthal-Lucas numbers, Ann. Math. Sil., 36, No 2 (2022), 115-128.
[4] C. Y. Chen, C. Y. Ku, D. C. Yen, Cryptanalysis of short secret exponents modulo RSA primes, Inf. Sci., 160, (2004), 225-233.
[5] J. S. Cho, S. S. Yeo, S. K. Kim, Securing against brute-force attack: A hash-based RFID mutual authentication protocol using a secret value, Comput. Commun., 34, No 3 (2011), 391-397.
[6] A. Chmielowiec, Fixed points of the RSA encryption algorithm, Theor. Comput. Sci., 411, No 1 (2010), 288-292.
[7] O. Deveci, E. Karaduman, The Pell sequences in finite groups, Util. Math., 96 (2015), 263-279.
[8] O. Deveci, A. Shannon, The quaternion-Pell sequence, Commun. Algebra, 46, No 12 (2018), 5403-5409.
[9] S. Falcon, On the k-Jacobsthal numbers, Amer. Rev. Math. Stat., 2, No 1 (2014), 67-77.
[10] P. A. Grillet, Abstract Algebra, 2nd Ed., Graduate Texts in Mathematics, 242, (2007), Springer, Berlin.
[11] L. Harn, J. Renb, Efficient identity-based RSA multisignatures, Comput. Secur., 27, No 1-2 (2008), 12-15.
[12] M. Hashemi, E. Mehraban, On the generalized order 2-Pell sequence of some classes of groups, Commun. Algebra, 46, No 9 (2018), 4104-4119.
[13] M. Hashemi, E. Mehraban, Fibonacci length and the generalized order k-Pell sequences of the 2-generator p-groups of nilpotency class 2, J. Algebra Appl., 22, No 3 (2023), 2350061.
[14] M. Hashemi, E. Mehraban, Some new codes on the k-Fibonacci sequence, Math. Probl. Eng., 2021 (2021), 7660902.
[15] A. F. Horadam, Jacobsthal and Pell curves, Fibonacci Q., 26, No 1 (1988), 79-83.
[16] E. Jochemsz, Cryptanalysis of RSA variants using small roots of polynomials, Ph.D. Thesis, Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2007).
[17] E. Jochemsz, A. May, A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants, in: X. Lai and K. Chen (Eds.), Advances in Cryptology - Asiacrypt 2006, Lecture Notes in Computer Science, 4284, (2006), 267-282, Springer, Berlin.
[18] M. Kaminaga, T. Watanabe, T. Endo, T. Okochi, Power analysis and countermeasure of RSA cryptosystem, Electron. Commun. Jpn. 3, 89, No 8, (2006), 10-20.
[19] E. Kilic, The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums, Chaos Solit. Fractals, 40, No 4 (2009), 2047-2063.
[20] E. Mehraban, M. Hashemi, Coding theory on the generalized balancing sequence, Notes Numb. Thy. Disc. Math., 29, No 3 (2023), 503-524.
[21] E. Mehraban, T. A. Gulliver, S. M. Boulaaras, K. Hosseini, E. Hincal, New sequences from the generalized Pell p-numbers and Mersenne numbers and their application in cryptography, AIMS Math., 9, No 5 (2024), 13537-13552.
[22] M. Mishra, A. R. Routray, S. Kumar, High security image steganography with modified Arnold’s cat map, Int. J. Comput. Appl., 37, No 9 (2012), 16-20.
[23] K. Prasad, H. Mahato, Cryptography using generalized Fibonacci matrices with Affine-Hill cipher, J. Disc. Math. Sci. Cryptogr., 25, No 8 (2022), 2341-2352.
[24] S. Yu, K. Ren, W. Lou, A privacy-preserving lightweight authentication protocol for low-cost RFID tags, in: Proc. IEEE MILCOM, Orlando, FL (2007).
[25] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Commun. ACM, 21, No 2 (1978), 120-126.
[26] K. Satake, M. Kasahara, Fast RSA-type cryptosystem with public data of small size, Electron. Commun. Jpn. 3, 80, No 2 (1997), 24-34.
[27] S. Uygun, H. Eldogan, Properties of k-Jacobsthal and
k-Jacobsthal Lucas sequences, Gen. Math. Notes, 36, No 1 (2016), 34-47.
IJAM
o Home
o Contents