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Abstract

In this paper, we define two new sequences using the generalized Ja-
cobsthal numbers and generalized Pell (p,7)— numbers. First, sequences
are obtained from the characteristic polynomials of these numbers and
then sequences are derived from the Hadamard-type product of these
polynomials. The determinants and combinatorial and exponential rep-
resentations of these new sequences are given. As an application, they
are used in an RSA cryptosystem.
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1. Introduction

The Pell numbers denoted by {P, }¢° are defined as
Pn:2pn71+Pn72, TLZO,

with initial conditions /) = 0 and P; = 1. The Pell sequence can be gen-
erated in different ways. One is via the generalized Pell (p,i)—numbers
that are defined as follows.

DEFINITION 1.1 ([19]). For p € N and 0 < i < p, the generalized
Pell (p,i)—numbers are

Pi(p) = 2P, _,(p) + P’rz;,—p—l(p)v n>p+l1,
with iniﬁial conditions Pi(p) = Pj(p) = --- = P{(p) = 0 and P(ii+1)(p) =
~-=P(p) =1

For example, if 1 = 2 and p = 3, we have
P2(3) = 2P7_(3) + P} 4(3), n >4,
so the sequence is {P?(3)} = {0,0,0,1,2,4,8,17,36, 76, 160, - - - }.
The k—step generalized Pell sequence was introduced in [7] and its
properties modulo m were investigated. The quaternion-Pell sequence

was defined in [8] and some useful results were obtained. The generalized
order 2—Pell sequences of some classes of groups were investigated in [12].
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In [13], the Fibonacci length and generalized order of k-Pell sequences of
the 2-generator p—groups of nilpotency class 2 were obtained.

The Jacobsthal numbers J,, are another important sequence which is
defined as, [15],
Jp=Jp-1+ 22, n>0,
with initial conditions Jy = 0 and J; = 1. The Jacobsthal numbers have
many generalizations [9], 27], one of which is as follows.

DEFINITION 1.2. For k > 2, the generalized Jacobsthal numbers,
Ik, are [3]
Jn,k - (k - 1)Jn—1,k + kJn—2,k7 n Z 27

with initial conditions Jy, = 0 and J; 5, = 1.

For example, if k = 2 we have J,, 2 = J,,—12 + 2J,_22 so the sequence
is {Jn2}® = {0,1,2,6,16,---}. The characteristic polynomials of the
generalized Pell (p,i)—numbers and generalized Jacobsthal numbers are
Pt — 227 — 1 and 2% — (k — 1)z — k, respectively.

The Hadamard-type product of polynomials f and g is defined as
follows, [2].

DEFINITION 1.3. The Hadamard-type product of polynomials f and
gis fxg=>7,(a;*b)z", where

- aibi7 if aibi 7é 0’
a; * by = { ai + by, if a;b; =0,

and f(1) = a2+ +a1x+ag and g(x) = b2 +b, 12" 4 by +by.

An important application of sequences is in cryptography. In [22],
the Fibonacci sequence was used for image encryption. The Fibonacci
sequence was employed in [I] to secure data for transmission. In [23],
Fibonacci matrices were used to construct an Affine-Hill cipher. Here,
an RSA algorithm using sequences is proposed.

The RSA algorithm [26] is
Me¢ = C (mod n),
C?= M (mod n),

where M and C' are the plaintext and ciphertext, respectively, n is a
prime number, e is the public key, and d is the secret key. It is an
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important public key cryptosystem that has been studied extensively
[16, 17, 18]. In [4], an attack on a short secret exponent d, modulo a
larger RSA prime ¢ was presented. A multi-signature RSA algorithm
which has both fixed length and verification time was given in [11]. In
[6], fixed points of the RSA algorithm were obtained to provide estimates
for the randomly chosen parameters. The weaknesses of this algorithm
with multiple encryption and decryption exponents were studied in [25].

Motivated by the above results, we introduce two new sequences from
generalized Pell (p,i)—numbers and the generalized Jacobsthal numbers
and examine their properties. These sequences are used to obtain new
RSA cryptosystems and their security is studied. This is one of the first
applications of sequences in cryptography.

The remainder of this paper is organized as follows. In Sections 2
and 3, we present the generalized Jacobsthal-Pell (k, p)—sequences and
Hadamard-type generalized Jacobsthal-Pell (k, p)—sequences, respectively.
Then the generalized Jacobsthal-Pell (k, p)—sequence matrix and gener-
alized Jacobsthal-Pell (k,p)—sequence matrix are used to develop two
RSA algorithms.

2. The generalized Jacobsthal-Pell (k, p)—sequences

In this section, we introduce new sequences from the characteristic
polynomials of the generalized Pell (p,7)—numbers and generalized Ja-
cobsthal numbers. Then, some results are obtained that will be useful in
subsequent sections.

The generalized Jacobsthal-Pell (p, k)—sequences, p an integer, are
defined as follows.

DEFINITION 2.1. For k£ > 2 and p an integer, p > 3, the generalized
Jacobsthal-Pell (k, p)—sequences, {JP,(k,p)}:°, are

JPipr3(k,p) = (b + 1)J Pospia(k, p) — (k = 2)J Poypia (K, p)
—2kJP,p(k,p) + JPyya(k,p) — (k — 1)JPy1(k,p) — kJP,(k,p),
n >0, (1)

where JPy(k,p) = JPi(k,p) = --- = JP,(k,p) = 0 and
JPP+2<k7p) =L



AN RSA CRYPTOSYSTEM BASED ON ... 231

ExAMPLE 2.1. For k = 3 and p = 3 we have
JP,16(3,3) =4JP,15(3,3) — 1JP,44(3,3) — 6JP,15(3,3)
+ JP,42(3,3) —2JP,11(3,3) —3JP,(3,3), n >0,
so the sequence is

{JP,(3,3)}° ={0,0,0,0,0,1,4, 15,50, 162,510, - - - }.

From (1),

JPn+p+3(ka p)
JPnerJrQ(ka p)

k+1 —(k—2) —2k 0 01 —(k—1) —k
1 0 0 0 00 0 0
0 1 0 0 00 0 0
0 0 0 - 1 0 0
0 0 0 0 -~ 01 0 0

|0 0 0 0 0 1 0

J-Pn+p+2(k7p)
JPn-l—p-l—l(kvp)

JPnJrl(k?p)
JP,(k,p)
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LEMMA 2.1. Forp =3, k=3, and n > 6 we have
[ JP,5(3,3) —(6JP,3(3,3) + JP,14(3,3)) + P.(3)
JPn+4<3’ 3) (6JP7L+2(3 3)+JPn+3<3a3>>+Pn 1( )
(F (3))71 — JPn+3(3a 3) _(GJPn+1(37 3) + JPn+2(3a 3)) + Pn 2( )
’ JP12(3,3)  —(6JP(3,3) + JPota(3,3)) + Prs(3)
JPn+1(3 3)  —(6JF1(3,3) + JP,(3,3)) + Pas(3)
P,(3,3) —(6JP,—2(3,3)+JP,_1(3 ,3))—|—Pn 5(3)
—6JP,14(3,3) + Poi1(3) Poyia(3)
—6JP,:3(3,3) + P.(3)  Pu11(3)
—6JP,12(3,3) + P,_1(3)  P,(3)
—6JP11(3,3) + Pr2(3) Po1(3)
—6JP,(3,3) + P,—3(3)  Pn,—2(3)
—6JP,-1(3,3) + P,—4(3) P,_3(3)
—(3JP,3(3,3) +2JP,14(3,3)) —3JPF,24(3,3) T
—(3JP,42(3,3) +2JP,45(3,3)) —3JPF,43(3,3)
—(3JP,+1(3,3) + 2JP,12(3,3)) —3JPFP,12(3,3) | (As(3))"
—(3JP,(3,3) +2JP,1(3,3)) —3JP,.1(3,3) |~ V3 ’
—(3JP,_1(3,3) +2JP,(3,3)) —3JP,(3,3)
—(3JP,5(3,3) +2JP,-1(3,3)) —3JFP,_1(3,3)
where
4 —1 —6 1 —2 —3]
10 0 0 0 0
0O 1 0 0 0 O
F3(3) - 0 0 1 0 0 0 ) (2)
0O 0 0 1 0 O
o 0 0 0 1 0]

and P,(3) := P2(3).

P r o o f. The proof is by induction on n.
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For p =3, k = 3, and n = 6 we have

1582 —1474 —3043 36 —1506 —15307
510 —458 —964 17 —474 —486
6 162 —138 —296 & —145 —150
TsB)" =150  _38 —88 4 -42 —45
5 —10 -23 2 —11 —12
4 —1 6 1 -2 -3 ]
T JP1(3,3) —(6JPy(3,3) + JPo(3,3)) + Ps(3)
JPiy(3,3) —(6JPs(3,3) + JPs(3,3)) + P;
| JP(3,3)  —(6JP:(3,3) + JPs(3,3)) + P,
| JP(3,3) —(6JPs(3,3) + JP:(3,3)) + P
JP;(3,3)  —(6JP5(3,3) + JPs(3,3)) + P,
| JPy(3,3) —(6JPs(3,3)+ JPs(3,3)) + P,
—6JP(3,3) + Pr(3) Ps(3)
—6JPy(3,3) + Ps(3)  Py(3)
—6JPs(3,3) + P5(3)  Ps(3)
—6JP;(3,3) + Py(3)  Ps(3)
—6JF5(3,3) + P5(3) Pu(3)
—6JP5(3,3) + P»(3) P3(3)
—(3JPy(3,3) +2JPy(3,3)) —3JP1o(3,3)
—(3JPs(3,3) +2JPy(3,3)) —3JPy(3,3)
—(3JP:(3,3) +2JPs(3,3)) —3JPs(3,3)
—(3JP5(3,3) +2JP5(3,3)) —3JP:(3,3)
—(3JP5(3,3) +2JPs(3,3)) —3JPs(3,3)
—( (3,3) (3,3)) (3,3)

3J P

+2JP5

233
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Now, assume that the statement holds for n = s. Then, forn = s+ 1

4 —1 —6 1 —2 —3
1 0 0 0 0 0
a1 (001 0 0 0 0
B =19 0 1 0 0 0
00 0 1 0 0
00 0 0 1 0]
" JP5(3,3)  —(6JP,5(3,3) + JPsa(3,3)) + ()
JP,.4(3,3) —(6JP,5(3,3) + JP,i5(3,3)) + Po_y(3)
JP,.5(3,3) —(6JP5+1(3,3)+JPS+2(3,3)) _5(3)
1 JPa(3,3)  —(6JPy(3,3) + JP,1(3,3)) + ()
JPi1(3,3)  —(6JP1(3,3) + JPy(3,3)) + Po_y(3)
JP,(3,3)  —(6JP,_5(3,3) + JP,_1(3 ,3))+Ps 5(3)
—6JP,14(3,3) + Poy1(3)  Piia(3)
—6JP,y3(3,3) + Pi(3)  Puii(3)
—6JP,15(3,3) + P1(3)  Pi(3)
—6JP,11(3,3) + P,_s(3) Pi1(3)
—6JP,(3,3) + P,_5(3)  P,_»(3)
—6JP,_1(3,3) + P,_4(3) P,_5(3)
—(3JP,:5(3,3) + 2JP,y4(3,3)) —3JPyy4(3,3) ]
—(3JP,:2(3,3) + 2JP,y3(3,3)) —3JP,,5(3,3)
—(8JP,:1(3,3) + 2JP,12(3,3)) —3JP,2(3,3)
—(3JP,(3,3) + 2JP,;1(3,3)) —3JP.;1(3,3)
—(3JP,_1(3,3) +2JP,(3,3))  —3JPy(3,3)
—(3JPs_5(3,3) +2JP,_1(3,3)) —3JP,_1(3,3) _
= (A3(3))"*".

O

Using (2), we have I'3(3) = —2, so the determinant of (I'3(3))" is
equal to (—2)".

Let I',(3) = [mj](p+3)x(p+3) be the companion matrix for the gener-
alized Jacobsthal-Pell (3, p)—sequences. It can readily be established by
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induction n that for p >4 and n > p+ 3:
(Fp(3)" =

JPn+p+2(37p) _(GJPn-H?(gvp) + JPn+p+1(37p)) + P’Vl<p)
JPn+p+1(3>p) _(6JPn+p—1(3>p) + JPn+p(3ap)) + Pn—l(p)

JPn+;(3,p) —(6JPn71(3,p)+J1:Dn(3,p))+Pn p-1(P)
JP”(?)?p) _(6<]Pn—2(37p) + JPn—1(37p)) +Pﬂ —p— 2( )

~6JPypi1(3,3) + Poyi(3)  Poa(3) - n+p 1(p)
—6JP,.,(3,3) + Pu(p) Poi(p) -+ Paype 2(29)
—6JPn(3,3‘)+Pn,p(p) Pnfp'ﬂ(p) P 2(19)

—6JP,-1(3,3) + Po—p-1(p)  Payp(p) -+ Pas(p)

—(3JPoip(3,p) + 2J Paips1(3,p))  —3J Poipra(3,p)
—(3JPpip-1(3,p) + 2J P, y,(3,p)) 3JPn+p(3, )

_(3JPn—2(3>p) + QJPn—l(Svp)) _BJPn—1(37p)

where P,(p) := P?~!(p).

LEMMA 2.2. The characteristic equation of the generalized Jacobsthal-
Pell (k, p)—sequences

2P — (k4 1)2P"? + (k — 2)2?™ + 2ka? — 2® + (k — D)z + k =0,
does not have multiple roots for p > 3 and k > 2 .

Proof. Itis clear that aP*3 — (k + 1)a?*™? + (k — 2)aP*™! + 2ka? —
2?2+ (k— Dz + k= (2P — 227 — 1)(2® — (k — 1)z — k). We show that
for p > 3,2P*! — 227 — 1 = 0 has distinct roots. Suppose 3 is a root
of f(z) = 0 where f(z) = 2P™' — 22P — 1 = 0 so that 8 ¢ {0,1}. If 8
is a multiple root, then f(8) = f(8) = 0. Now, f(8) = 0 and 8 # 0

2
give f = % while f(5) = 0 means that 5?(5 —2) — 1 = 0. Then
D

(-
p+1 p+1
than 1 for p > 3. On the other hand, the roots of 22 — (k — 1)z —k =0
are —1 and k. Since (—1)P™' —2(=1)?—1 # 0 and (k)™ —2(k)? —1 # 0,
the result follows. O

) = 1, which is impossible since the left hand side is less
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For the generalized Jacobsthal-Pell (k, p)—sequences, {J P, (k,p)}, we
have

k+1 —(k—2) =2k 0 - 0 1 —(k—1) —Fk]

1 0 0 0 -+ 00 0 0

0 1 0 0 -+ 00 0 0

D, = . . . . . .
0 0 01 0 0

0 0 0 0 1 0

Let B1, B2, -+, Byrs be the roots of 2P — (k + 1)2P™ + (k — 2)aP™ +
2ka? — 2? + (k — 1)z + k = 0 and U, be the following (p + 3) x (p + 3)
Vandermonde matrix

(B2 (B)P*> - (Bpas)’™?
(BOPF (Ba)Ptt - (Bpys)P !

5.1 5.2 Bp‘+3
1 1 1

Now let U,(4, j) be a (p+3) x (p+3) matrix obtained from U, by replacing
the jth column of U, by Vp(i) where Vp(i) is the following (p + 3) x 1
matrix

(51 )n+p+37i

n4p+3—i
V(i) (B2) |

(6p+3)r'a+p+3—i

THEOREM 2.1. Forp > 3,k > 3, and (D,)" = [£*™), we have

Z7j

flen) detU—P(”)
I det U,

Proof Forp>3andk > 3, the matrix D,(k) can be diagonalized
since the eigenvalues are distinct. Let B, = diag(f, f2,- - , Bp+3), SO
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that D,U, = U,B,. Since U, is invertible, we have

( n N »n n —1
S B4 B (B T = (B
LR B2 4 LB B e [0 = By,

fi(p,n) (Bp+2)p+2 + fi(gm)(ﬁp_i_?)erl 4+ 4 Z?;ﬁ% = (ﬂp+2)n+p+3—i‘
\ fign) (ﬁp+3>p+2 + z‘,g’n)<ﬂp+3)p+1 +o Tt z‘,z;:ﬁ; = <5p+3)n+p+3_z~

Then it can be concluded that

Flon) det Uy (7, J)
I detU, ~’

for 1 <i,5 <p+3. a

LEMMA 2.3. Let t(x) be a generation function for the generalized
Jacobsthal-Pell (k,p)—sequences. Then

P2
t = .
(z) 1—(k+ 1Dz + (k—2)22 + 2ka3 — 2@t) + (k — 1)2P+2 4 kgrt3

(3)

Proof Wehave

Ha) = 50, TPl p)a”

= (k+ 1) Pyypia(k,p) — (k = 2)J Poipia(k, p) — 2kJ Py (K, p)
+JPn+2(kap) - (k - 1)‘]Pn+l(k7p) - k:‘]Pn(kvp)

= Pt 4 >t prsl(k + 1) JPoypia(k,p) — (k — 2)J Poypia (b, p)
—2kJ P, p(k,p) + JPnya(k,p) — (k — 1)J Pyy1(k,p) — kJ Py (k,p)]2™

= % + Zf;mg(k +1)JPpipia(k, p)a” + Ziﬁs —(k = 2)JPyipia(k, p)a”
+ 2 oz 2k Poyp(k,p)a™ + 3207 o I Poyo(k, p)a”

+ Zzoszr:S _(k - 1)Jpn+1(kap>xn —k Zzoszrg Jpn(kap>$n

= a2+ (k+ 1) 300, JPuypra(k,p)a™ — (k= 2) 3707 JPuypia(k,p)a”
=2k JPyyy(k,p)a™ + > 07 JPia(k,p)a™

—(k—=1)>>>2 Py (k,p)a™ — k> 0" JP,(k,p)x™

= 2P + (k + Dat(z) — (k — 2)2%(x) — 2kt (x) + 1oPT ()

—(k — 1)aPT2t(x) — kaPT3t(x).
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THEOREM 2.2.  The generalized Jacobsthal-Pell (k,p)—sequences
{JP,(k,p)} have the following exponential representation

t(z)=a""? exp Z@((/ﬂ +1) — (k — 2) — 2ka® + 2P — (k — 1)aP™ — kaPt2)",
i=1
where p > 3.

P roof. Using (2), we have
Int(z) = In 2P 2 —In(1—(k+1)z+(k—2)a2 42k — 2Pt 4 (k—1) 2P 24 kaP™3),
and since
—Inl— (k+ Dz + (k—2)2® + 2ka® — 2D 4 (k — 1)aP 2 4 ko t3
= —[—2((k+1) = (k- 2)x — 2kx* + 2 — (k — 1)aP™ — kaP*?)

1
— 51’2((/6 +1) — (k — 2)x — 2ka? + 2P — (k — 1)aPt! — kaPt?)?
1 . )
— o= =2 (k1) = (k= 22 — 2kx?* + 2P — (K — 1)aP™ — kPt — ...,
i
the result follows. O

THEOREM 2.3. For r,p € N and n > p+ 3, we have
(Tp(3))"(T(3))" = (Tp(3))"(Tp(3))" = (Tp(3))"""

P r o o f. The proof is straightforward by induction on 7. O

3. The Hadamard-type generalized Jacobsthal-Pell
(k, p)—sequences

In this section, we define new sequences using the Hadamard type of
the generalized Jacobsthal and Pell (p,i)—numbers.

DEFINITION 3.1. For k£ > 2 and p an integer, p > 3, the Hadamard-
type sequence, denoted {HJ,(k,p)}3°, is

HJn-i—p-i—l(kap) - 2HJn+p(k7p) - HJn-i—Q(kvp) + (k - 1)H‘]n+1(kap)
_kHJn(k7p)7n 2 07
(4)

with initial conditions HJy(k,p) = HJy(k,p) = --- = HJ,_1(k,p) =0
and H.J,(k,p) = 1.
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For p = 3 and k = 2 we have
HJ,2(2,3)+ HJp1(2,3) —2H J,(2,3), n>0, (5)

2H J,,3(2,3) —

so the sequence is

{HJn44(2,3)}5° ={0,0,0,1,2,3,5,7,8,8,5, —4,—21,--- }.

From (4),

HJpipr1(k,p)
HJn+p(k7 p)

HJn+2<k>p)
HJnJrl(k?p)

LEMMA 3.1.

(ws(2))" =

where

200 0 0 =Lkl K] e
10 00 00t
0 1 00 0 0 np—1VH P
00 --01 0 0 H}‘I]Tb(f’?;)
00 -0 0 1 0] %P
Forp=3, k=2, and n > 4 we have
HJpis(2,3) —2HJ,05(2,3) + HJpya(2,3)
HJpio(2,3) —2HJ,12(2,3) + Hpys(2,3)
HJpi1(2,3) —2HJ,11(2,3) + Hpya(2,3)
HJ,(2,3)  —2HJ,(2,3) + HJpet(2,3)

—2H Jy1(2,3) + HJpis(2,3) —2H ., 5(2,3)
—2HJ(2,3) + HJpi1(2,3)  —2HJ,1(2,3)
—2HJ,1(2,3) + HJ,(2,3)  —2HJ,(2,3)

—2HJy 5(2,3) + HJy_1(2,3) —2HJ,_1(2,3)

2 -1 1 -2
1 0 0 0

w3(2): 0 1 0 0 (6)
00 1 0
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P r oo f. The proof is by induction on n. For p = 3, k = 2, and
n = 4 we have

(7 —6 —1 —10
5 -3 -1 -6
Ww@)=13 1 o 4
_2 -1 1 =2
[ HJ:(2,3) —2HJ7(2,3) + HJs(2,3)
| HJs(2,3) —2HJs(2,3) + HJ7(2,3)
| HJ5(2,3) —2HJ5(2,3) + HJs(2,3)
I HJ,(2,3) —2HJ4(2,3) + HJ5(2,3)
—2HJ5(2,3) + HJs(2,3) —2H Js(2,3)
—2HJ,(2,3)+ HJ5(2,3) —2H J5(2,3)
—2H J3(2,3) + HJy(2,3) —2HJ4(2,3)
—2H J5(2,3) + HJ3(2,3) —2HJ3(2,3)
Assume the statement holds for n = ¢. Then forn =¢+1
2 -1 1 -2
1 0 0 O
t+1 _
(w3<2)) “lo 1 0 0
0 0 1 0
HJi3(2,3) —2HJ143(2,3) + HJ4(2,3)
» HJi12(2,3) —2HJ142(2,3) + HJ13(2,3))
HJi1(2,3) —2HJ141(2,3) + HJ42(2,3)
HJy(2,3) —2H Jy(2,3) + HJ111(2,3)
—2H J;11(2,3) + HJ112(2,3) —2HJ;19(2,3)
—2HJy(2,3) + HJ141(2,3)  —2HJ144(2,3)
—2H J;1(2,3) + HJy(2,3) —2H Jy(2,3)
—2HJ; 9(2,3) + HJ;—1(2,3) —2HJt,1(273)

HJia(2,3) —2HJpia(2,3) + HJpys(2,3)

_ | HJa(2,3) —2HJ14:3(2,3) + HJ44(2, 3))
= | HJio(2,3) —2HJ10(2,3) + Hpys(2,3)
HJin(2,3) —2HJp41(2.3) + Hpia(2,3)
C9HJys(2,3) + Hiys(2,3) —2HJp5(2,3)
C9HJ1(2,3) + Hpya(2,3) —2HJpys(2,3)
COHJN(2,3) + HJp1(2,3)  —2HJp4i(2,3)
O (2.3) + HI(2.3)  —2HJ,(2,3)
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Using (6), we have w3(2) = —2, so the determinant of (ws(2))" is
equal to (—2)". Let wy(2) = [mi;]pr1)x@p+1) be the companion matrix
for the Hadamard-type generalized Jacobsthal-Pell (2, p)—sequences. It
can be readily established by induction on n that for p > 4 and n > p+1

HJn+p<27p> _2Hjn+p(27p) + HJn+p+1(27p)

HJn+p71(27p) _2HJn+p71<27p) + HJn+p(27p)

(wp(2))" = S :

HJn+1(27p) _2Hjn+1(27p) + H‘]n+2(27p)
HJn(Q,p) _2H<]n(27p) +HJn+1(27p)

_2Hjn+p+1 (27p) + HJn+p+2(27p)
—2H Jo4p(2,p) + Hpip1(2,p)

—2H Jp9(2,p) + HJnis(2,p)
—2H J,11(2,p) + HJnia(2,p)

_2H<]2n+p—4(27p) + HJ2n+p—3(27 p)
—2H Jon1p-5(2,p) + HJ2pyp-4(2, p)

_2HJn+p72(27p) + HJn+p71<27p>
_2HJn+p*3(27p) + HJn+p72<27p>

—2HJnip-2(2,p) + HJpip-1(2,p) —2H Jnip-1(2, p)
—2HJpip-3(2,p) + HJpip2(2,p) —2HJnip2(2,p)

—2HJ,—1(2,p) + HJ,(2,p) —2HJ,(2,p)
—2H Jy—2(2,p) + HJp—1(2,p) —2HJ,1(2, p)

LEMMA 3.2. Let g(z) be the generating function of the Hadamard-
type generalized Jacobsthal-Pell (2, p)—sequences. Then

I‘p
9(@) 1—2x+ar71 — (k—1)ap + kapt! (M)
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Proof Wehave

g(:v) = Z HJn-i—p-&-l(k?p)xn

n=1

::2}{Jﬁ+p<k7p)'_'}{Jﬁ+2<k710 +_(k _'1)I{Jﬁ+l<k7p>'_'kf{Jﬁ(kap)

= :Ep + Z 2Hjn+p(kap) - HJn-l—Q(kap) + (k - 1)HJn+l(kap) - kHJn(kap)xn

n=p+1
=P + Z 2HJn+p(kap) - Z HJn+2(kap) + Z (k - 1)H<]n+1(k7p)
n=p+1 n=p+1 n=p+1
- Z kHJ,(k,p)x"
n=p+1
= :Ep + 2 Z H‘]n+p(k>p) - l.p—l Z HJn-i—Z(kap) + (k - 1):51) Z H‘]n-i-l(kap)
n=1 n=1 n=1
— k"™ " HJ, (k,p)a”
n=1

= a” + 2xg(x) — 2" 'g(x) + (k — D)a’g(x) — ka""g(z).

O

THEOREM 3.1. The Hadamard-type generalized Jacobsthal-Pell
(2, p)—sequences {HJ,(k,p)} have the following exponential represen-
tation

g(x) = 2P exp Z %(2 — 2?72 (K — D)a?™ ! — kaP)’,
i=1

where p > 5.

P r oo f. Using (6), we have

Ing(xr) =Ina? —In(1 — 2z + 2"~ — (k — 1) + ka?™),
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and since
—In(1 =22+ 2P — (k — 1)a? 4 kaP™)
= —[~2(2— 2"+ (k — 1)a? ! — kaP)
1

— 5952(2 — P2 4 (k= 1)aP™! — kaP)?

1. :
— = (2= 2P (k= DaP Tt — kaP) — -]
i

<

= i (xz) (2 — 2P 4+ (K — )P — kaP)’,

=1

the result follows. O
The following lemma can easily be proven by induction on s.

LEMMA 3.3. For s,p € N, and n > p+ 1 we have

(wp(3))" (@p(3))* = (wp(3))"" (= wp(3))*(wp(3))"-

4. An RSA cryptosystem using the generalized Jacobsthal
sequences and generalized Pell numbers

In this section, we introduce two RSA algorithms using the gener-
alized Jacobsthal-Pell (k,p)—sequences and Hadamard-type generalized
Jacobsthal-Pell (k,p)—sequences. Then the security of these algorithms
is examined.

First, for p > 3 and m > 2 we give an RSA algorithm using the gener-
alized Jacobsthal-Pell (3, p)—sequences. Alice and Bob agree on a public
key ((I'y(3)), m) and a secret key d := (I',(3))™", n a positive integer.
Alice chooses (I',(3))™ and computes C' = M x (I',(3))" = C (mod m)
where M = (T',(3))%, i > 3, is the plaintext, and sends this to Bob. He
uses the secret key d to obtain C' x (I';(3))™" = M (mod m). The algo-
rithm steps are given below and illustrated in Fig. 1.

Algorithm 1

(1) Alice and Bob agree on a public key ((I',(3)), m) and secret key
d:= (I'y(3))™", n a positive integer.
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(2) Using (I',(3))™ with the plaintext M = (I',(3))" (mod m), Alice
calculates C' = M x (I',(3))" = C (mod m) and sends this to
Bob.

(3) Bob uses the secret key d to obtain C' x (I',(3)) ™™ = M (mod m).

Alice (T, (3).m) public key Bob
; d=(T,(3))".neNsecret key
M =(T,(3)) (modm) il
ieN
Cxd=M

ETE (modm)

i >
Mx(T,(3)) =C Send C

(modm)

FiGUuRre 1. Algorithm 1

LEMMA 4.1. The message M is obtained by Bob after decrypting
the ciphertext C'.

P roof. We have that C' x d = M (mod m) so
C=Mx(I',)3)" (mod m).
From Theorem 11

Cx (Ip(3)) 7" = (I(3))" x (T,(3)) " = (Ip(3))" (mod m).
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EXAMPLE 4.1. Alice and Bob agree on a public key ((I';(3)), 5) and
a secret key d := (I'3(3))7%. Using (I'3(3))" with the plaintext

1471 —14310
4854 —4625
1582 —1474
_ 8
M = (I5(3))° = 510  —458
162  —138
| 50 —38
10 2 0 1 3
40 41 1 4
212140
= 1p 2 1 2 4 4| (mod
22 4300
0 2 2 4 3 0]
Alice calculates
C = (I'3(3))® x (['3(3))°
10 2 0 1 37 [1582
40 41 1 4 510
212140 |162
10212 4 4 50
22 4300 15
02 2430 | 4
302 4 2 2 4
20410 1
303221
=13 1 3 1 4 4| (mod5),
2030 4 3
4 4 4 2 1 2]

—29048 160 —14454
—9456 76 —4694
—-3043 36 —1506
-964 17 474
—296 8 —145
—88 4 —42
5),
—1474 —-3043 36 —1506
—458 —964 17 —474
—-138 =296 & —145
—38 —88 4 42
—10 -23 2 11
-1 —6 1 -2

—145627

—4746
—1530
—486
—150
—45

—15307
—486
—150

—45
—12
-3
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and sends this to Bob. Bob uses the secret key d to obtain

300 4 2 2 47 1582 —1474 —3043 36 —1506 —15307

50410 1 510 —458 —964 17 —4T4  —486
cg_ 303 220 162 -1 206 8 145 150

313144 50 —38 -88 4 —42  —45

2030 4 3 15 —10 -923 2 —11  —12

444212 |4 -1 6 1 -2 -3

1020 1 3

40411 4

91921 40

=lg 21 2 4 4| (mod5)

994300

022 43 0

The Hadamard-type generalized Jacobsthal-Pell (2, p)—sequences are
now used in an RSA algorithm. Alice and Bob agree on a public key
((wp(2)), m) and a secret key d := (w,(2))~", n a positive integer. Alice
chooses (w,(2))" and computes C' = M x (w,(2))" = C' (mod m) where
M = (w,(2))", i > 3, is the plaintext, and sends this to Bob. He uses
the secret key d to obtain C' x (w,(2))™" = M (mod m). The algorithm
steps are given below and illustrated in Fig. 2.

Algorithm 2

(1) Alice and Bob agree on a public key ((w,(2)), m) and secret key
d = (wp(2))~", n a positive integer.

(2) Using (w,(2))™ with the plaintext M = (w,(2))" (mod m), Alice
calculates C' = M x (w,(2))" = C (mod m) and sends this to
Bob.

(3) Bob uses the secret key d to obtain C' X (w,(2))™™ = M (mod m).

LEMMA 4.2. In Algorithm 2, the message M is obtained by Bob
after decrypting the ciphertext C'.

P r o o f. The proof is similar to that of Lemma 4.1 and so is omitted.
O
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Alice (e,(2).m) public key Bob
d=(m,(2))" .neNsecret key
M:((up(l))‘ (mod m). Compute
icl Cxd=M
Compute (modm)
Mx(o,(2)) =C Send C
(mod m)

FI1GURE 2. Algorithm 2

EXAMPLE 4.2. Alice and Bob agree on a public key ((w3(2),5) and
a secret key d := ((w3(2))~". Using ((w3(2))” and the plaintext M

5 =3 -1 -6 0 2 4 4
_ s 3 -1 0 -4 |3 4 01
M_((w3(2)) - 2 1 1 -9 - 2 4 1 3 (mOd 5)7
1 0 0 0 1 000
Alice calculates
(0 2 4 4] 4 —14 —8 —16
_ 3 7 |3 4 01 8 —11 -6 -—16
C=(ws@x @) =1y 4y 1 3|8 8 -3 —14
_1 0 0 0_ 7 —6 -1 -10
(1 7 2 2]
4 2 1 3
=11 924 0 (mod 5),
_0 1 2 4_
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and sends this to Bob. Bob uses the secret key d to obtain
-7

172 9 4 —14 -8 —16
4921 3 8 —11 —6 —16
Cxd=11 5 4 9 § -8 —3 —14
01 2 4 7 -6 —1 —10
02 4 4
340 1
:2413(m0d5).
1000

4.1. Security analysis. We now consider attacks on the proposed cryp-
tosystem and compare it with the original RSA algorithm. Attacks on
the RSA algorithm include:

(1) known plaintext attacks
(2) chosen ciphertext attacks

(3) factorization attacks

(4) encryption key attacks

(5) decryption key attacks.

Since Algorithms 1 and 2 use large matrices, a brute force attack is
considered as in [0, 24]. In this attack, all possible matrices should be
considered. In Algorithms 1 and 2, (I';(2)) and (w,(3)) are employed,
respectively. The general linear group GL)(F,), ¢ prime, consists of all
invertible matrices of order A x A over F, [10]. Since the matrices used
to create the keys are invertible, the number of keys is equal to the order
of the general linear group

| GLA(F) |= (¢ =" )" =) - (" = 1).

For X\ a large number and ¢ a very large prime, the number of keys is
extremely large.

ExaMPLE 4.3. Consider (I',(2)). Since (I'y(2)) is a (p+3) x (p+3)

matrix, there are
| GLyi3(Fp) |= (mP*? — mP*2) (mP? — mPHh) o (mP T — m) (mP T — 1),
(8)

matrices.
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(i) If p =3 and m = 5, the number of keys is

| GL3(Fy) |= (5°—5%)(5°—5%)(5°—5%)(5°—5%)(5°—5)(5°~1) = 2.26x10'".
(ii) If p = 47 and m = 37, the number of keys is

| GLso(Fyr) |= (37°°=37%)(37°°—37%%) ... (37°°—-37)(37°" 1) = 3.1x10°%,

EXAMPLE 4.4. For Algorithm 2, the number of keys using (w,(3)) is

| GLp1(F) [= (P =m?) (mP T —mP ™) - (mPH —m) (mP = 1). (9)

(i) If p =2 and m = 3, we have
| GL3(F3) |= (3° — 3%)(3% — 3)(3° — 1) = 11232.
(ii) if p =49 and m = 37, we have
| GLso(Fyr) |= (37°°=37%)(37°°—37%%) ... (37°0—-37)(37°" 1) = 3.1x10%%,

If m is a very large prime number and p is a large integer, the number
of keys makes it intractable for an attacker to consider all possible keys.
Thus, this algorithm has higher security compared to the original RSA
algorithm.

Consider the following attacks.

1. Side channel attack: In a side channel attack, the cryptographic
system is broken using information that is accidentally leaked or
maliciously obtained. In the proposed algorithm, the public key is
a matrix with very large size and m is a very large prime number.
Thus, it would be very time consuming and unlikely to provide
complete information, and so is not feasible.

2. Timing attack: This is a type of side channel attack in which
the attacker tries to compromise the cryptographic system by
analyzing the time taken to execute the algorithm. Because the
keys in the proposed algorithm are in the form of a matrix and
multiplication is employed, accessing the system and obtaining
the required information will be very time-consuming and prone
to errors, so this is not a useful attack.

3. Chosen ciphertext attack: A chosen ciphertext attack is an attack
where the attacker gathers information by obtaining decryptions
of chosen encryptions. As with the others, this attack will be very
time consuming as significant data is required, thus it is infeasible.
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4. Fault attack: In this approach, the attacker intentionally intro-
duces faults or errors into the cryptographic system to exploit vul-
nerabilities and extract information. Considering that the keys
are very large, the calculations will likely be done on very powerful
computer systems. Thus, accessing and damaging these systems
is not viable.

5. Conclusion

We introduced two new sequences from the generalized Pell (p,i)—
numbers and generalized Jacobsthal numbers. Matrices were obtained
from these sequences and they were used to develop RSA algorithms.
This is the first application of these sequences in a cryptosystem. The
RSA algorithms were explained with examples, and they were shown to
have high security. These algorithms can be implemented with other
sequences such as Fibonacci and Pell like sequences and their generaliza-
tions that have simple periodicity [14], 20, 21].
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