IJAM: Volume 38, No. 2 (2025)

DOI: 10.12732/ijam.v38i2.7

STUDY THE STABILITY OF THE

FOURIER TRANSFORM OF THE

VARIABLE-ORDER TIME FRACTIONAL

SEMI-LINEAR DIFFUSION EQUATION

 

Mohamed El-hadi Smakdji 1,§, Ammar Derbazi 2,

Mohamed Dalah 3, Abdelwahab Zarour 4

 

1,3,4 Department of Mathematics

Faculty of Exact Sciences

University Constantine 1: Fr`eres Mentouri

ALGERIA

2 University Bordi-Bou Arriridj

Department of Mathematics

34030, ALGERIA

 

Abstract. In this research, we present a finite difference scheme (FDS) aimed at exploring the linear time and space fractional advection equation. To approximate the fractional derivatives, we utilize the fractional Taylor series for u (x, t) at t_j and x_i.  Our primary focus lies in constructing a numerical scheme (NS) for the mathematical model. Following this, we delve into an examination of the stability and convergence of our NS. Ultimately, we conduct numerical simulations of the fractional advection equation using the FDM across different fractional parameter values. The outcomes of these simulations demonstrate satisfactory convergence, thereby confirming the efficacy of the proposed algorithm.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v38i2.7
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 2

References

[1] T.F. Nonnenmacher, R. Metzler, On the Riemann-Liouville fractional calculus and some recent applications, Fractals, 3, No 3, 557–566 (1995).

[2] T. Mahmood, M. Rahman, M. Arfan, S.-I. Kayani, M. Sun, Mathematical study of Algae as a bio-fertilizer using fractal-fractional dynamic model, Math. Comput. Simul., 203, 207–222 (2023).

[3] Z. Chen, P. Qiu, X.-J. Yang, Y. Feng, J. Liu, A new fractional derivative model for the anomalous diffusion problem, Therm. Sci., 23, Suppl. 3, 1005–1011 (2019).

[4] C. Chen, F. Liu, K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198, No 2, 754–769 (2008).

[5] G.A. Birajdar, D.B. Dhaigude, An implicit numerical method for semilinear fractional diffusion equation, In: Proc. of the International Conference on Mathematical Sciences, Chennai, India, 674–678 (2014).

[6] Y. Lin, X. Chuanju, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, No 2, 1533–1552 (2007).

[7] R.A. Oderinu, J.A. Owolabi, M. Taiwo, Approximate solutions of linear time-fractional differential equations, J. of Mathematics and Computer Sci., 29, No 1, 60–72 (2023).

[8] H.-M. Zhang, F. Liu, Numerical simulation of the Riesz fractional difusion equation with a nonlinear source term, J. Appl. Math. Comput., 26, No 1-2, 1–14 (2008).

[9] P. Kumar, O.P. Agrawal, An approximate method for numerical solution of fractional diferential equations, Signal Process., 86, No 10, 2602–2610 (2006).

 

IJAM

o                 Home

o                 Contents

o                 Editorial Board