IJAM: Volume 38, No. 3 (2025)

DOI: 10.12732/ijam.v38i3.2

SOLVING THE NEGATIVE ORDER
KORTEWEG-DE VRIES EQUATION
WITH A SELF-CONSISTENT SOURCE
CORRESPONDING TO
MOVING EIGENVALUES

 

Gayrat Urazboev1, Iroda Baltaeva 1,§

 

1 Urgench State University, H. Alimdjan Str. 14 Urgench 220100, UZBEKISTAN

 

Abstract. This study focuses on addressing the negative order Korteweg–de Vries (KdV) equation with a self-consistent source associated with dynamic eigenvalues, using the inverse scattering transform (IST). The primary goal is to establish the evolution of the scattering data for the spectral problem linked to the negative-order Korteweg–de Vries equation with a self-consistent source and moving eigenvalues. The derived relationships fully describe the evolution of the scattering data, enabling the application of the IST technique to solve the given problem.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v38i3.2
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 3

References

[1] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg–de Vries equation, Physical Review Letters, 19 (1967), 1095-1097; http://dx.doi.org/10.1103/PhysRevLett.19.1095.

[2] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics, 21 (1968), 467-490; https://doi.org/10.1002/cpa.3160210503.

[3] B.M. Levitan, Inverse Sturm–Liouville Problems, De Gruyter, Berlin-Boston (1987); https://doi.org/10.1515/9783110941937.

[4] V.K. Mel’nikov, Exact solutions of the Korteweg-de Vries equation with a self-consistent source, Phys. Lett., 128 (1988), 488-492; http://dx.doi.org/10.1016/j.chaos.2005.03.030.

[5] V.K. Mel’nikov, Creation and annihilation of solitons in the system described by the Korteweg-de Vries equation with a self-consistent source, Inverse Problems, 6 (1990), 809; https://dx.doi.org/10.1088/0266-5611/6/5/010.

[6] J. Leon, A.A. Latifi, Solution of an initial-boundary value problem for coupled nonlinear waves, J. Phys. A, 23 (1990), 1385-1403; http://dx.doi.org/10.1088/0305-4470/23/8/013.

[7] J.M. Verosky, Negative powers of Olver recursion operators, J. Math. Phys., 32 (1991), 1733-1736; https://doi.org/10.1063/1.529234.

[8] S.Y. Lou, Symmetries of the KdV Equation and four hierarchies of the integrodifferential KdV equation, Journal of Mathematical Physics, 35 (1994), 2390-2396; https://doi.org/10.1063/1.530509.

[9] Z. Qiao, J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhysics Letters, 94 (2011), 50003; http://dx.doi.org/10.1209/0295-5075/94/50003.

[10] Z. Qiao, F. Engui, Negative-order Korteweg–de Vries equations, Physical Review E, 86 (2012), 016601; http://dx.doi.org/10.1103/PhysRevE.86.016601.

[11] M. Rodriguez, J. Li, Z. Qiao, Negative order KdV equation with no solitary traveling waves, Mathematics, 10 (2021), 48; https://doi.org/10.3390/math10010048.

[12] Li, Zi-Liang, Constructing of new exact solutions to the GKdV–mKdV equation with any-order nonlinear terms by G’/G expansion method, Applied Mathematics and Computation, 217 (2010), 1398-1403; http://dx.doi.org/10.1016/j.amc.2009.05.034.

[13] E.M. Zayed, The (G’/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics, Journal of Applied Mathematics and Computing, 30 (2009), 89-103; http://dx.doi.org/10.1007/s12190-008-0159-8.

[14] E.M. Zayed, The (G’/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics, Journal of Applied Mathematics and Computing, 30 (2009), 89-103; https://doi.org/10.1007/s12190-008-0159-8.

[15] G.U. Urazboev, I.I. Baltaeva, I.D. Rakhimov, The generalized expansion method for the Loaded Korteweg–de Vries equation, Journal of Applied and Industrial Mathematics, 15 (2021), 679-685; http://dx.doi.org/10.33048/sibjim.2021.24.410.

[16] G.U. Urazboev, M.M. Khasanov, I.D. Rakhimov, Generalized (G’/G)-expansion method and its applications to the loaded Burgers equation, Azerbaijan Journal of Mathematics, 13 (2023), 248-257; http://dx.doi.org/10.59849/2218-6816.2023.2.248.

[17] R. Hirota, Exact solution of the Korteweg- de Vries equation for multiple collisions of solitons, Physical Review Letters, 27 (1971), 1192; https://doi.org/10.1103/PhysRevLett.27.1192.

[18] A.A. Reyimberganov, I.D. Rakhimov, The solution solutions for the nonlinear Shrodinger equation with self-consistent source, The Bulletin of Irkutsk State University Series Mathematics, 36 (2021), 84-94; https://doi.org/10.26516/1997-7670.2021.36.84.

[19] G.U. Urazboev, I.I. Baltaeva, Integration of Camassa-Holm equation with a self-consistent source of integral type, Ufimskii Matematicheskii Zhurnal, 14 (2022), 84-94; https://doi.org/10.13108/2022-14-1-77.

[20] G.U. Urazboev, A.B. Yakhshimuratov, M.M. Khasanov, Integration of negative-order Modified Korteweg–de Vries equation in a class of periodic functions, Theoretical and Mathematical Physics (Russian Federation), 2017 (2023), 1689-1699; http://dx.doi.org/10.1134/S0040577923110053.

[21] M.M. Khasanov, I.D. Rakhimov, Integration of the KdV equation of negative order with a free term in the class of periodic functions, Chebyshevskii Sbornik, 24 (2023); 266-275; http://dx.doi.org/10.22405/2226-8383-2023-24-2-266-275.

[22] G.U. Urazboev, M.M. Khasanov, Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32 (2022), 228-239; https://doi.org/10.35634/vm220205.

[23] V.B. Matveev, A. Mikhail, Darboux Transformations and Solitons, Springer, Berlin (1991).

 

IJAM

o                 Home

o                 Contents

o                 Editorial Board