
International Journal of Applied Mathematics

Volume 38 No. 3 2025, 335–349
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v38i3.2

SOLVING THE NEGATIVE ORDER

KORTEWEG-DE VRIES EQUATION

WITH A SELF-CONSISTENT SOURCE

CORRESPONDING TO

MOVING EIGENVALUES

Gayrat Urazboev 1, Iroda Baltaeva 1,§

1 Urgench State University, H. Alimdjan Str. 14

Urgench 220100, UZBEKISTAN

e-mail: gayrat71@mail.ru, iroda-b@mail.ru

(§ corresponding author)

Abstract

This study focuses on addressing the negative order Korteweg–de
Vries (KdV) equation with a self-consistent source associated with dy-
namic eigenvalues, using the inverse scattering transform (IST). The pri-
mary goal is to establish the evolution of the scattering data for the
spectral problem linked to the negative-order Korteweg–de Vries equa-
tion with a self-consistent source and moving eigenvalues. The derived
relationships fully describe the evolution of the scattering data, enabling
the application of the IST technique to solve the given problem.
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1. Introduction

One of the key areas of research in mathematical physics involves
the analysis of water waves. To describe their behavior, various inte-
grable systems are used, often expressed as nonlinear partial differential
equations such as the Korteweg–de Vries equation (KdV), Burgers equa-
tion, modified Korteweg–de Vries equation (mKdV), sine-Gordon equa-
tion and nonlinear Schrödinger equation (NLSE). Investigating solitons
and these integrable systems extends beyond fluid mechanics, finding ap-
plications in fields such as nonlinear optics, classical and quantum field
theory, and more.

In 1967, American researchers Gardner, Green, Kruskal, and Miura
introduced the inverse scattering transform (IST) method to solve the
Cauchy problem for the KdV equation, [1]. This method was initially
applied to the Sturm–Liouville equation, as described in their seminal
work. The KdV equation is given by:

ut − 6uux + uxxx = 0, u = u(x, t).

Shortly thereafter, Lax generalized this powerful approach by formu-
lating the Lax equation [2]:

Lt = [L,A],

where [L,A] = LA − AL represents the commutator of the operators L
and A. Here, L is the Sturm–Liouville operator:

Ly ≡ −y′′ + u(x, t)y,

and A is a skew-symmetric operator acting in a Hilbert space. The
IST method relies on reconstructing the potential of the Sturm–Liouville
operator from scattering data [3], providing a framework to solve a wider
class of integrable equations.

In 1987, V.K. Melnikov expanded the Lax equation to the form:

Lt = [L,A] + C,

where C consists of differential operators with coefficients derived from
solutions to the spectral problem for L. Melnikov’s work [4, 5] integrated
the KdV equations with self-consistent sources using the IST method,
particularly for rapidly decreasing functions. The term “self-consistent
source” was first introduced in his studies and later applied in physical
contexts, as seen in the work of J. Leon and A. Latifi [6].

Although much of the research focused on the positive-order KdV
hierarchy, less attention was paid to the negative-order KdV hierarchy.
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Verosky explored symmetries and negative powers of recursion operators
[7], while Lou derived additional symmetries using invertible recursion
operators, leading to the negative order KdV (NKdV) equation [8]:

ut = 2vvx, vxx + uv = 0 ⇐⇒
(vxx
v

)
t
+ 2vvx = 0.

Subsequent studies investigated the Hamiltonian structures, Lax pairs,
conservation laws, and soliton solutions of the NKdV equations [9, 10, 11].

Recent research has emphasized the integration of nonlinear evolution
equations with self-consistent sources. Various methods have been devel-
oped, including the (G′/G) - expansion method [12, 13, 14, 15, 16], the
Hirota direct method [17, 18], the inverse scattering transform [4, 5, 20],
the inverse spectral problems [20, 21, 22] and the Darboux transformation
[23].

In this paper, we apply the IST method to solve the NKdV equation
with a self-consistent source associated with moving eigenvalues. The
derived relationships fully describe the evolution of the scattering data,
enabling the application of the IST method to the problem under con-
sideration.

2. Statement of the problem

Consider the following NKdV equation with a self-consistent source
that corresponds to moving eigenvalues

ut = 2vvx + 2
∑N

m=1
∂
∂x
(φmψm),

vxx = uv,

−φ′′
m + uφm = λmφm,

−ψ′′
m + uψm = λmψm, m = 1, 2, ..., N, t > 0, x ∈ R,

(1)

under the initial condition

u|t=0 = u0(x), x ∈ R, (2)

where the initial function u0(x) has the following properties:

(1)
∫∞
−∞(1 + |x|)|u0(x)|dx <∞.

(2) The operator L(y) ≡ −y′′ + u0(x)y = λy, x ∈ R1 has exactly N
number of negative eigenvalues λ1(0), λ2(0), ..., λN(0).

In the problem considered, φm(x, t)− is the eigenfunction of the op-

erator L(t) ≡ − d2

dx2 + u(x, t) corresponding to the eigenvalue λm(t) =
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−χ2
m(t), and ϕm(x, t)− is linearly independent with the φm(x, t) solution

of the equation L(t)y = λmy, such that

W {φm(x, t), ψm(x, t)} = ωm(t), m = 1, 2, ..., N. (3)

Here ωm(t), m = 1, 2, ..., N are given continuous functions that satisfy
the condition for any non-negative t:∫ t

o

ωm(τ)dτ < −λm(0), m = 1, 2, ..., N,

ω1(t) < ω2(t) < ω3(t) < ... < ωN(t). (4)

It is assumed that the function u(x, t) is sufficiently smooth, tends to
zero under x→ ±∞ and u(x, t), v(x, t) tends to its limits rapidly enough
when x→ ±∞ and satisfies the conditions:∫ ∞

−∞
(1 + |x|) (|u(x, t)|+ |ut(x, t)|) dx <∞,

∫ ∞

−∞
(1 + |x|) (|vx(x, t)|+ |vxx(x, t)|) dx <∞,

v2(x, t) → 1, as |x| → ±∞. (5)

3. Scattering problem

In this section, the dependence of the function u(x, t) on t is omitted.
We consider the Sturm–Liouville equations on the axis [3]

Lg ≡ −g′′ + u(x)g = k2g, −∞ < x <∞ (6)

with a real function u(x) (potential) satisfying the “rapidly decreasing”
condition ∫ ∞

−∞
(1 + |x|) |u(x)| dx <∞. (7)

In this part, we present the necessary information regarding the direct
and inverse problems for equation (6).

Denote by f(x, k) and g(x, k) the Jost solutions of equation (6) with
asymptotic:

lim
x→−∞

g(x, k)eikx = 1, lim
x→∞

f(x, k)e−ikx = 1, Im k = 0. (8)
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Under condition (7), such solutions exist and are uniquely determined by
asymptotics (8). For functions {f(x, k), f(x,−k)} and {g(x, k), g(x,−k))}
are pairs of linearly independent solutions of equation (6), therefore:

f(x, k) = b(k)g(x, k) + a(k)g(x,−k),

g(x, k) = −b(−k)f(x, k) + a(k)f(x,−k), Im k = 0. (9)

By variable k, the Jost solutions f(x, k) and g(x, k) continue analytically
to the upper half-plane Im k > 0. It is easy to see that the following
equality is true:

a(k) = − 1

2ik
W {f(x, k), g(x, k)} , (10)

where W {f, g} = f(x, k)g′(x, k) − f ′(x, k)g(x, k), moreover, for real k
we have:

|a(k)|2 = 1 + |b(k)|2 .
The function a(k) is an analytic continuation to the half-plane Im k > 0
and has a finite number of simple zeros kn = iχn, n = 1, 2, ..., N.
Moreover, λn = −χ2

n is an eigenvalue of the operator L. For Im z > 0
the function a(z) is restored from its zeros iχn, n = 1, 2, ..., N and the

function r+(k) = b(−k)
a(k)

− defined on Im k = 0,

a(z) =
N∏
j=1

z − iχj

z + iχj

exp

− 1

2πi

∫ ∞

−∞

ln
(
1− |r+(k)|2

)
k − z

dk

 .

According to (9), (10) and properties of the function a(k),

g(x, iχj) = Bjf(x, iχj), j = 1, 2, ..., N. (11)

For solutions f(x, k), g(x, k) satisfying the representations

f(x, k) = eikx +

∫ ∞

x

A+(x, z)eikzdz,

g(x, k) = e−ikx +

∫ x

−∞
A−(x, z)e−ikzdz, (12)

the kernels A+(x, z), A−(x, z) whose real functions are related to the
potential u(x) by the relations

u(x) = −2
d

dx
A+(x, x), u(x) = 2

d

dx
A−(x, x). (13)
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The kernelA+(x, y) in representation (12) is a solution of the Gelfand–Levi-
tan–Marchenko integral equation

Ω+(x+ y) + A+(x, y) +

∫ ∞

x

A+(x, z)Ω+(z + y)dz = 0 (y > x), (14)

where

Ω+(x) = −
N∑
j=1

iBj

da(z)
dz

|z=iχj

e−χjx − 1

2π

∫ ∞

−∞
r+(k)eikxdx,

and a(z)− is the analytic continuation of the function a(k) (Im k = 0) to
the upper half-plane. Now the potential u(x) is determined from equality
(13).

The set {r+(k), B1, B2, ..., BN , χ1, χ2, ..., χn} is called the scatter data
for problem (6)-(7).

Note that the function

hn(x) =
d
dk

(g(x, k)−Bnf(x, k)) |k=iχn

ȧ(iχn)
(15)

is a solution of the equation L0y = −χ2
ny. According to (8) and (10) for

Im k > 0 we obtain the following asymptotics:

f(x, k) ∼ a(k)eikx in x→ −∞,

g(x, k) ∼ a(k)e−ikx in x→ ∞,

hence, these estimates and equality (15) imply that

hn(x) ∼ eχnx in x→ ∞, (16)

hn(x) ∼ −Bne
−χnx in x→ −∞. (17)

Using (16) and (17), we obtain

W {hn(x), f(x, iχn)} = −2χn,

W {hn(x), g(x, iχn)} = −2Bnχn, n = 1, 2, ..., N. (18)
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4. Evolution of scattering data

In this section, we consider the system of equations:{
ut = 2vvx +G(x, t),

vxx = uv,
(19)

where G(x, t) - is a sufficiently smooth function for any non-negative t
satisfying the conditions G(x, t) = o(1) as x → ±∞. Equations (19) are
considered under the initial condition (2).

Solutions to the problem (19)-(2) are sought in the class of functions
(5). For real k, we will look for the compatibility condition of the Lax
pair for the system of equations (19) in the form

−gxx + (u− k2)g = 0, (20)

gt = − 1

2k2
(
v2gx − vvxg

)
+

(
− 1

2ik

∫ ∞

−∞
Gggdx+

1

2ik

)
g

+
1

2ik
g

∫ x

−∞
Gg2dx, (21)

where g = g(x, k, t), Im k = 0. Passing in the last equality to the limit
x→ −∞ and by virtue of (5),(8),(9) we obtain:

at = − a

2ik

∫ ∞

−∞
Gggdx− b

2ik

∫ x

−∞
Gg2dx, (22)

bt =
1

ik
b− b

2ik

∫ ∞

−∞
Gggdx− a

2ik

∫ x

−∞
Gg2dx, Im k = 0. (23)

Multiplying (23) by a and subtracting from it, the equality (22) is mul-
tiplied by b using relation |a(k)|2 = 1 + |b(k)|2 for real k and from the
definition of the function r+(k, t), we derive

∂r+(k, t)

∂t
= − i

k
r+(k, t)− 1

2ika2(k)

∫ ∞

−∞
Gg2dx, Im k = 0. (24)

For the classical KdV equation, this result was obtained in [5].
In the general case, the eigenvalues of the operator L(t)y = −y′′ +

u(x, t)y depend on time, so differentiating the equalities

g(x, kn, t) = Bn(t)f(x, kn, t), n = 1, 2, ..., N,

by t,
∂g(x, kn, t)

∂t
+
∂g

∂t
|k=kn

dkn
dt

=
dBn

dt
f(x, kn, t)
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+Bn
∂f(x, kn, t)

∂t
+Bn

∂f

∂k
|k=kn

dkn
dt

those according to (15), we have

∂g(x, iχn, t)

∂t
=
dBn

dt
f(x, iχn, t)

+Bn
∂f(x, iχn, t)

∂t
− i

dχn

dt
ȧ(iχn)hn(x, t). (25)

Similarly to the continuous spectrum, in the case of a discrete spectrum,
we will look for the compatibility condition of the Lax pair in the form:

−gxx(x, iχn, t) + u(x, t)g(x, iχn, t) = −χ2
ng(x, iχn, t) (26)

∂g(x, iχn, t)

∂t
=

Bn

2χ2
n

(
v2
∂f(x, iχn, t)

∂x
− vvxf(x, iχn, t)

)
+

(
− 1

2χn

∫ x

−∞
Gg(x, iχn, t)hn(x, t)dx−

Bn

2χn

)
f(x, iχn, t)

+
1

2χnBn

∫ x

−∞
Gg2(x, iχn, t)dxhn(x, t). (27)

Passing in this equality to the limit as x→ ∞ and using the asymptotics
for f(x, iχn, t), hn(x, t), u(x, t) we get:

dBn

dt
e−χnt − i

dχn

dt
ȧ(iχn)e

χnx

=
1

2χ2
n

Bn(−χn)e
−χnx − Bne

−χnx

2χnBn

∫ ∞

−∞
Gg(x, iχn, t)hn(x, t)dx

− 1

2χn

Bne
−χnx +

eχnx

2χnBn

∫ ∞

−∞
Gg2(x, iχn, t)dx.

Indeed,
dBn

dt
= −Bn

χn

− 1

2χn

∫ ∞

−∞
Gg(x, iχn, t)hn(x, t)dx, (28)

i
dχn

dt
ȧ(iχn) =

1

2χnBn

∫ ∞

−∞
Gg2(x, iχn, t)dx, n = 1, 2, ..., N. (29)

Let now Φn = Φn(x, t) be the normalized eigenfunction of the operator
L(t) corresponding to the eigenvalue λn = −χ2

n, n = 1, 2, ..., N, then
according to the identity

g(x, iχn, t) = bnΦn(x, t),
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equality (29) can be rewritten as

iȧ(iχn)
dχn

dt
=

b2n
2χnBn

∫ ∞

−∞
GΦ2

n(x, t)dx. (30)

As shown in the monograph [3]

ȧ(iχn) = −i b
2
n

Bn

,

therefore, equality (29) takes the form:

dχn

dt
= − 1

2χn

∫ ∞

−∞
GΦ2

n(x, t)dx. (31)

Thus, equality (24), (28), and (31) can be combined into the following
main theorem.

Theorem 4.1. If the potential of the operator L(t) = − d2

dx2 +u(x, t)
is a solution of equation (19) in the class of functions satisfying the
conditions (4) then the scattering data of the operator L(t) changes for
t as follows:

∂r+(k, t)

∂t
= − i

k
r+(k, t)

− 1

2ika2(k)

∫ ∞

∞
G(x, t)g2(x, iχn, t)dx, Im k = 0,

dBn(t)

dt
= −Bn(t)

χn(t)
− 1

2χn(t)

∫ ∞

−∞
G(x, t)g(x, iχn, t)hn(x, t)dx,

dχn(t)

dt
= − 1

2χn(t)

∫
G(x, t)Φ2

n(x, t)dx, n = 1, 2, ..., N,

where Φn(x, t) is the normalized eigenfunction of the operator L(t) cor-
responding to the eigenvalue λn = −χ2

n(t).

We will apply the result of Theorem 4.1 for

G(x, t) = 2
N∑

m=1

∂

∂x
(φmψm). (32)

To apply the results of Theorem 4.1, we need to calculate the following
integrals: For m ̸= n ∫ ∞

−∞

∂

∂x
(φmψm)Φ

2
ndx = 0. (33)
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For m = n, noticing that Φn = dnφn, taking into account (3), we get:∫ ∞

−∞

∂

∂x
(φnψn)Φ

2
ndx

=
1

2

∫ ∞

−∞
(φn,ΦnW {Φn, φn}+ ψnΦnW {Φn, φn}) dx

=
1

2

∫ ∞

−∞
Φ2

nW {φn, ψn} dx =
ωn(t)

2
. (34)

Combining (33) and (34) by Theorem 4.1, we infer that

dχn(t)

dt
= − ωn(t)

2χn(t)
, n = 1, 2, ..., N. (35)

By the definition of the function ψm and the asymptotics of the Jost
solutions,

ψm → − ωm

2χmc−m
exp(−χmx), in x→ −∞,

ψm → ωm

2χmc+m
exp(χmx), in x→ +∞, (36)

where c+m, c
−
m are determined from the equalities

φm(x, t) = c+mf(x, iχm, t),

φm(x, t) = c−mg(x, iχm, t), m = 1, 2, ..., N. (37)

Since the function hn is a solution to the equation L(t)hn(x, t) = λnhn(x, t),

hn(x, t) = αn(t)ψn(x, t) + βn(t)g(x, iχn, t). (38)

According to (3) and (18)

αn(t) =
2χnc

−
n (t)Bn(t)

ωn(t)
, n = 1, 2, ..., N, (39)

besides

W {hn, ψn} =
βnωn

c−n
, n = 1, 2, ..., N. (40)

Now we will calculate the next integral for m ̸= n:∫ ∞

−∞

∂

∂x
(φmψm)gnhndx

= − 1

2(λn − λm)
(W {gn, ψn}W {hn, ψm}) |∞−∞,

here we use asymptotic formulas (16), (17), and (36) and obtain:

(W {gn, φm}W {hn, φm}) |∞−∞ = 0.



SOLVING THE NEGATIVE ORDER . . . 345

For m = n using (40), (30) we have∫ ∞

−∞

∂

∂x
(φnψn)gnhndx =

iȧ(iχn)βnωnBn

2
.

Thus,

dBn(t)

dt
=

(
− 1

2χn(t)
− 1

2χn(t)
iȧ(iχn)βn(t)ωn(t)

)
Bn(t), (41)

n = 1, 2, ..., N.

Similarly, using the definition of Jost solutions, and the asymptotic
formulas of φm(x, t), ψm(x, t) we have∫ ∞

−∞
2

N∑
m=1

∂

∂x
(φmψm) g

2dx = − 2ωmk
2

χm(t)(k2 − χ2
m(t))

a(k)b(k),

therefore,

∂r+(k, t)

∂t
=

(
− i

k
+

N∑
m=1

kωn

iχm(t) (k2 + χ2
m(t))

)
r+(k, t), Im k = 0. (42)

The results obtained in (35), (41), and (42) can be combined to the
following theorem.

Theorem 4.2. If the functions u(x, t), v(x, t), φ1, ..., φm, ψ1, ..., ψm

are solutions to problem (1) - (5) then the scattering data of the operator

L(t) ≡ − d2

dx2 + u(x, t) change with respect to t as follows:

∂r+(k, t)

∂t
=

(
− i

k
+

N∑
m=1

kωn

iχm(t) (k2 + χ2
m(t))

)
r+(k, t), Im k = 0,

dBn(t)

dt
=

(
− 1

2χn(t)
− 1

2χn(t)
iȧ(iχn)βn(t)ωn(t)

)
Bn(t),

dχn(t)

dt
= − ωn

2χn(t)
, n = 1, 2, ..., N.

Note that, for the classical KdV equation this result was obtained in
the work [5]. The resulting equality completely determines the evolution
of the scattering data, which makes it possible to apply the IST method
to solve problem (1)-(5).
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Example 4.1. Let

u(x, 0) = − 2

ch2x
.

In this case,

N = 1, r+(k, 0) =
b(−k, 0)
a(k, 0)

= 0, B1(0) = 1, χ1(0) = 1.

Applying Theorem 4.1, we get:

r+(k, t) = 0, B1(t) = e2γ1(t), χ2
1(t) = 1−

∫ t

0

ω1(τ)dτ,

where

γ1(t) =
1

2

∫ t

0

(
− 1

χ1

− β1ω1

4χ2
1

)
dτ.

Solving the inverse problem, we get

u(x, t) = − 2χ2
1

ch2(χ1x− γ1)
.

Therefore, we find

f(x, iχ1, t) =
e−γ1

2ch(χ1x− γ1)
, g(x, iχ1, t) =

eγ1

2ch(χ1x− γ1)
,

h1(x, t) = 2eγ1
(
sh(χ1x− γ1) +

xχ1

ch(χ1x− γ1)

)
.

Assuming

φ1(x, t) =
eγ1

2ch(χ1x− γ1)
,

from equality (37), (38), (39) we obtain,

ψ1(x, t) =
ω1e

−γ1

χ1

(
sh(χ1x− γ1 +

χ1x

ch(χ1x− γ1
− β1

4ch(χ1x− γ1)

)
.

After some calculations, as a result we find

v = th(χ1x− γ1).

Graphics of the function u(x, t), v(x, t), φ1(x, t) and ψ1(x, t)
where

ω1(t) =
1

(t+ 1)2
, β1(t) = 4(t+ 1)

3
2 , χ1(t) =

1√
t+ 1

,

γ1(t) =
2

3
− 2

3
(t+ 1)

3
2

are given below.
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.

Conclusions

Without additional conditions (4), as in the work of [5], the eigenval-
ues of the operator L(t) in the considered model depend on t (moving
eigenvalues). In this case, some moving eigenvalues may enter the contin-
uous spectrum, or two distinct eigenvalues may merge. As a result, the
number of eigenvalues of the operator L(t) decreases (some disappear).
Over time, the merged eigenvalues may split again, and the eigenvalues
that entered the continuous spectrum may reappear as discrete eigenval-
ues. This phenomenon gives rise to the effect known as the creation and
annihilation of solitons [6].
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