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Abstract

In this paper, we propose a novel numerical technique - Regularized
Iterative Fractional Differential Equation Method (FDEM) - for solving
nonlinear fractional differential equations (FDEs) involving the Caputo
derivative. The method begins by reformulating the fractional differ-
ential equation as a Volterra integral equation and addresses the weak
singularity in the kernel by a regularization strategy that decomposes
the nonlinear term. This decomposition enables a stable and accurate
numerical integration using the composite trapezoidal rule. To handle
the nonlinearity, a fixed-point iteration is employed at each time step.
The resulting algorithm is simple to implement, computationally effi-
cient with O(m?) complexity, and adaptable to various types of nonlinear
FDEs. The method’s stability, accuracy, and flexibility make it suitable
for practical applications, including systems of fractional equations and
higher-dimensional problems. For validating the robustness and effec-
tiveness of the established approach, numerous numerical problems are

addressed.
Math. Subject Classification: 26A33, 656M12, 65105, 34A08
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1. Introduction

In more recent academic discourse, fractional differential equations
(FDEs) have arisen as very vital tools, especially due to their ability
to model hereditary dynamics and encapsulate memory in engineering,
biological, and diverse physical contexts [I, 2]. A noteworthy imple-
mentation of FDEs is the Caputo operator, which turned out to be no-
table in the modeling of numerous complicated real-world phenomena,
see [3), 141 51 6] [7), 18, @], 10 [11]. Such an operator enables the integration of
conventional initial conditions, accordingly adjusting properly with ini-
tial value problems, an important property that improves its pertinence.
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However, there are challenges that beset the numerical resolution of non-
linear FDEs. The most important of these challenges are the properties
of the fractional derivatives inherent nonlocality and the complexities
presented by weakly singular kernels within their integrals [16], [17]. The
presence of nonlinearity aggravates such matters, as classical discretiza-
tion schemes consistently meet with challenges connected to convergence
and stability [1§].

To alleviate these complications, we present a new numerical scheme
called the Regularized Iterative Finite Difference Element Method (FDEM).
Such a novel approach harmonizes regularization methods with an effec-
tive iterative discretization technique. The primary notion spins around
examining the nonlinear term, enabling the analytical handling of the
kernel’s singular component. Such an analytical scheme allows the im-
plementation of classical quadrature approaches without the complica-
tions of numerical instability frequently related to singularities [19]. In
addition, a mechanism of the fixed-point iteration is incorporated to con-
sistently resolve the consequent nonlinear system at every step of the
temporal discretization [20].

This work introduces a novel approach for solving nonlinear frac-
tional differential equations involving the Caputo derivative using the
Regularized Iterative Finite Difference Element Method (FDEM). The
proposed technique reformulates the original problem into a Volterra in-
tegral equation and overcomes the challenges of weakly singular kernels
through a regularization strategy. Combined with a fixed-point iteration
and composite trapezoidal discretization, this method achieves accurate
and stable results. The approach is computationally efficient, adaptable
to systems of equations, and extendable to higher-dimensional fractional
models. The effectiveness of the method is validated through several
nonlinear examples with known analytical solutions, demonstrating its
robustness and reliability for a wide class of fractional problems.

The execution of the proposed algorithm is straightforward, yielding
accurate results while maintaining computational efficiency. The method
is flexible and may be extended to systems of nonlinear fractional differen-
tial equations. Its effectiveness is confirmed through a series of numerical
examples involving nonlinear problems of fractional order. The accuracy
of the approach is demonstrated by comparing the obtained numerical
results with known analytical solutions, confirming the robustness and
reliability of the proposed scheme for solving a broad class of Caputo-type
fractional models.
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The structure of the remainder of this exposition is as follows: Sec-
tion 2 delineates the mathematical groundwork of the problem and its
conversion into an integral equation format. Section 3 elaborates on the
regularization process for the weakly singular kernel. Section 4 provides
a comprehensive overview of the numerical discretization and iterative
methodology employed. Subsequently, Section 5 elaborates on the over-
arching algorithm, culminating in Section 6, which underscores the prin-
cipal attributes and prospective enhancements of the proposed method.

2. Preliminaries and fractional calculus background

In this part, we shortly recollect some crucial properties and defi-
nitions in relation to fractional calculus that will be very essential to
our investigation. Herein, we intend to concentrate on the Caputo and
Riemann—-Liouville derivative operators as well as the Riemann—Liouville
integral operator [21], 22] 23].

DEFINITION 2.1. Suppose f is a real-valued function defined on the
interval [a,b]. The Riemann-Liouville fractional integral of order a > 0

is defined by
Jf(E) = ﬁ/ (t— )" f(s)ds, t>a, (1)

where I'(+) is the Gamma function:

['(z) = / t*te7'dt, for z > 0.
0

This operator satisfies the semigroup property:
JOOf(t) = (), 8> 0. (2)
It also holds that JOf(t) = f(t).

DEFINITION 2.2. For a function f € C"[a,b] and n—1 < o < n, the
Riemann-Liouville fractional derivative of order « is defined as
1 d [
D ft)= =——— [ (t—s)" ! ds.
() = oy g = ) ds Q

Actually, the above definition extends the conventional derivative but
demands suitable initial conditions in fractional order, which might not
be physically explainable in a lot of applications. However, to go beyond
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the limits of the Riemann—Liouville derivative operator, the Caputo de-
rivative operator was presented.

DEFINITION 2.3. For f € C"[a,b] and n — 1 < a < n, the Caputo
derivative of order « is defined as

L t — 5" M (g) ds
>/a“ a0 () ds. (4)

Def(t) = T(n—a)

The Caputo operator enables employment of conventional initial con-
ditions:

(@), f'(a),..., f""V(a),

which is especially beneficial in modeling many real-world applications.

ProrosiTION 2.1. If f € C"[a,b], then the Caputo derivative can
be expressed in terms of the Riemann—Liouville derivative as:

n—1 (k) a
DEf(t) = Diy, <f(t) DRI a>k> . 5)

k=0

In fact, this formula demonstrates that the Caputo operator efficiently
extracts the polynomial initial terms, getting better and more appropri-
ate for problems with conventional initial conditions.

PROPOSITION 2.2. Some basic characteristics of the Riemann—Liouville
integral operator J* can be mentioned:

e Linearity: J*(af + bg) = aJ*f + bJ*g, where a,b are scalars.
e J% of a power function:

«a _ F(/B+1> —a +a
J (t_a)ﬁ_r(6+a+1)<t Y

e Connection to identity operator: lim, .o+ J*f(t) = f(t).

, pB>-—1

3. Numerical formulation

Consider the following nonlinear FDE formulated by means of the
Caputo operator:

D%u(t) = f(t,u(t)), tela,b, ac(n—1n), neN, (6)
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subject to the initial conditions
u(a) =up, k=0,1,...,n—1. (7)

Herein, D*u(t) represents the Caputo derivative operator of fractional
order «, outlined by

1 t
DaU(t) = m/a (t — s)"_o‘_lu(") (S) dS, (8)
which is especially beneficial in establishing physical models, as it enables
dealing with classical initial conditions.

To facilitate numerical treatment, we apply the Riemann-Liouville
fractional integral operator and reformulate the differential equation into
an equivalent Volterra integral equation:

n—1 U,(k) a t
u(t) =Y k,( )(t—a)'“rﬁ / (t— )" f(s,u(s)) ds.  (9)

This integral form reveals a weakly singular kernel (t—s)*~!, which poses
numerical difficulties near the lower limit s = ¢t. To overcome this, we
regularize the kernel by decomposing the integrand as

f(s,uls)) = [f(s,uls)) = f(t, u(t)] + f(¢, u(t)), (10)

leading to the decomposition of the integral as

/ (t — )" f(s,u(s)) ds = / (t — )2 (s, u(s)) — £t u(t))] ds

(t—a)®

10 0) oy

(11)
The first term now has a regularized integrand, while the second term is
an explicit analytical expression.

To numerically approximate the regularized integral, we partition the
interval [a, b] into m uniform subintervals of step size h = b_w“, with grid
points defined as t; = a + jh, for 7 =0,1,...,m. We define

f(s,uls)) = f(t u(t))
(@)(t—s)t=> 7

g(t,s) =
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so that the regularized integral can be approximated using the composite
trapezoidal rule:

| (6= s () = Ft ) s

3 r—1 (12)
~ 3 [g(tr, a) + 2Zg(tr,tj)] .

j=1
With this discretization in place, we employ a fixed-point iterative

scheme to compute wu(t,) for r = 1,2,...,m. Let the initial guess be
u®(t,) = u(t,_1). Then the update rule at each iteration ¢ is given by

= u®(q muO ) (t, — a)®
u(Z—i—l) (tr) _ k'( )(tr . a)k + f(t OE;()C)ygt )
k=0 ’
-I—g g(t,,a) +2i:g(tr,tj)] ) (13)

The iteration continues until convergence is achieved, which is deter-
mined by the condition

W (t,) — u(t,)] < tol,
where tol is a user-specified tolerance.

This formulation forms the core of our proposed method and sets the
stage for the full algorithm implementation and subsequent analysis.

4. General algorithm (Pseudocode)

The previous section, which has included a desired numerical formu-
lation, is applied using an effective step-by-step algorithm designed to ad-
dress nonlinear problems formulated in the Caputo sense. The intended
algorithm blends regularization, discretization via the trapezoidal rule,
and fixed-point iteration to manage the weak singularity and nonlinear-
ity simultaneously. In the succeeding content, we condense the complete
computational approach in the form of a general pseudocode.

e Input: o € (n—1,n), interval [a, b], number of steps m, function
f(t,u), initial values {u®(a)}}=,.
e Output: Approximate solution {u(t,)}",.
Initialize:
e Set h=(b—a)/m, t, =a+rh.
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o Assign u(ty) = up.
e Precompute C} = % for k=0,1,...,n—1.
Main Loop:

e For r =1 tom:
— Compute t, = a + rh.
— Set uO(t,) = u(t,_1).
— Repeat until convergence:

ftr, uO (L))t — a)®

n—1
w0 (t,) = Cl(ty — a)* +
k=0

al'(«)
h r—1
+5 |9t a) + zzlg(tr,tj) :
j:

— Set u(t,) = ufal ().
5. Numerical examples

To exhibit the efficacy and capability of the proposed approach, we
introduce three demonstrative examples of FDEs. Such examples address
numerous nonlinear problems and verify the precision of the yielded an-
alytical solutions.

ExampLE 5.1. (]24]) To demonstrate the effectiveness of the pro-
posed Regularized Iterative FDEM method, we consider the nonlinear
fractional differential equation:

D*u(t) +u(t) =te™, 1 <a <2, te[0,20], u(0) =0, v'(0) =0, (14)

where D' denotes the Caputo fractional derivative of order o = 1.5.
This problem is challenging due to the nonlinear term and the fractional-
order derivative.

The function f(¢,u(t)) = —u(t) +te~" is substituted into the integral
formulation and handled using the regularized kernel approach described
earlier. We divide the interval [0,20] into m = 100 equal subintervals,
and use a fixed-point iteration with a maximum of 100 iterations per grid
point.

The exact solution is computed numerically using a convolution with
the Mittag-Leffler function:

u(t) = /0 (t —8)* ' Eya(—(t —5)*) - se™* ds,



REGULARIZED ITERATIVE FDEM: ... 377

where E, , is the two-parameter Mittag-Leffler function. This solution
is evaluated using numerical integration.

The results in Table [I| compare the numerical approximation and the
reference solution at selected points. The absolute error is also reported.

TABLE 1. Comparison between numerical and exact solu-
tions for Example 1 with o = 1.5, m = 100.

t unum(t) Uexact (t) |unum _ Uexact|
2.0 | 0.357863 | 0.358557 | 6.94x10~*
4.0 | 0.201659 | 0.201226 4.34x1074
6.0 |-0.034101 | -0.034040 | 6.15x107°
8.0 -0.023594 | -0.023606 | 1.18x107°
10.0 | 0.004042 | 0.004012 3.06x107°
12.0 | 0.000419 | 0.000428 8.23x107°
14.0 | -0.002005 | -0.002003 | 2.22x10~°
16.0 [ -0.000724 | -0.000729 | 4.08x10~°
18.0 | -0.000263 | -0.000265 | 1.20x10~°
20.0 [ -0.000319 | -0.000319 | 1.53x107"

The results indicate that the numerical method provides an accurate
approximation of the exact solution, with the error decreasing as ¢ in-
creases. This validates the accuracy and efficiency of the Regularized
Iterative FDEM for fractional nonlinear problems.

ExamMpPLE 5.2. ([24]) In this example, we consider a nonlinear
fractional differential equation involving the Caputo derivative of order
a = 0.9 over the interval [0, 1]. The equation is defined as:

H-a
L(5—a)
The nonlinear term f(¢,u(t)) =
of a known exact solution:
u(t) = t" By 5(—t*),
where F, g(-) is the Mittag-Leffler function.

The solution is approximated using the proposed Regularized Itera-
tive FDEM method. The interval [0, 1] is divided into m = 100 subinter-
vals, and the fixed-point iteration is applied at each grid point. The

D*%u(t) = —u(t) + u(0) = 0, (15)

—u(t) + % ensures the existence
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numerical results are compared with the exact solution, and the absolute

error is computed.

Table [2 presents the computed values of u(t), the exact solution, and
the corresponding absolute errors at selected points.

Table |3| presents the computed values of the error at different values

of a.
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TABLE 2. Comparison between numerical and exact solu-
tions for Example 2 with av = 0.9, m = 100.

t Unum (t) Uexact (t) ‘unum — Uexact |
0.0 [ 0.000000 0.000000 0.000000
0.1]4.096x107% | 4.045x107% | 5.04x10°8
0.2]6.332x107° | 6.313x107° | 2.00x10°7
0.3]3.126x107% | 3.122x107* | 4.36x10°7
0.4]9.658x107% | 9.650x107% | 7.43x10°7
0.5]2.307x1073 | 2.306x1073 | 1.11x10°¢
0.6 | 4.687x1073 | 4.685x1073 | 1.53x10°¢
0.7 8511x1073 | 8.509x1073 | 1.98x10°¢
0.8]1.424x1072|1.424x1072 | 2.47x10°¢
0.92.239x1072 | 2.238x1072 | 2.98x107°
1.0 | 3.350x1072 | 3.350x1072 | 3.51x1076

TABLE 3. Error values at different values of a for Example2.

At a=0.5

At o =0.75

At a=0.9

Ata=1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
6.28 x 1078
3.58 x 1077
9.41 x 1077
1.83 x 1076
3.04 x 1076
4.57 x 107
6.42 x 1076
8.60 x 1076
1.11 x 107°
1.39 x 107°

0
5.32 x 1078
2.59 x 1077
6.16 x 107
1.11 x 106
1.73 x 107
2.47 x 1076
3.30 x 1076
4.23 x 1076
5.24 x 1076
6.32 x 1076

0
4.06 x 1078
1.80 x 1077
4.08 x 1077
7.09 x 1077
1.07 x 1076
1.48 x 107¢
1.93 x 107¢
2.42 x 1076
2.93 x 1076
3.45 x 107°

0
3.17 x 107®
1.32 x 1077
2.89 x 1077
4.90 x 1077
7.26 x 1077
9.88 x 1077
1.26 x 107°
1.56 x 107°
1.86 x 107°
2.17 x 1076
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The results confirm the high accuracy of the method, with errors re-
maining small across the entire interval. This validates the applicability
of the Regularized Iterative FDEM to fractional models with known an-
alytical solutions, further confirming its reliability for solving nonlinear
FDEs.

EXAMPLE 5.3. ([25]) In this example, we apply the Regularized It-
erative FDEM to solve the nonlinear fractional Riccati differential equa-
tion:

D'u(t) = u(t) — u?(t), u(0) = 0.5. (16)
This is a classic logistic-type growth model, where the fractional order
is a = 1, corresponding to the classical first-order derivative. The exact
solution for this equation is known and given by

1
u(t) = Treo 0

which represents a sigmoid function with asymptotic behavior

(17)

u(t) = 1 as t — oc.

We solve this equation numerically on the interval [0, 20], using m =
100 subintervals. The right-hand side function is f(¢, u(t)) = u(t) —u?(t).
We apply a fixed-point iteration with up to 50 iterations per grid point,
using the regularization and discretization strategies described earlier.

The computed results are presented in Table 4] showing the approxi-
mate solution, exact solution, absolute error, and relative error at selected
points.

The numerical results closely match the exact sigmoid solution, with
both absolute and relative errors remaining extremely small. This con-
firms the robustness of the method even for long time intervals and
nonlinearity-dominated dynamics.

6. Conclusion

This paper introduces an innovative numerical approach known as
Regularized Iterative FDEM, designed to address nonlinear fractional dif-
ferential equations that incorporate the Caputo derivative. The proposed
method involves transforming the original equation into a corresponding
Volterra integral format while regularizing the weakly singular kernel.
This transformation is pivotal in mitigating the complications associ-
ated with the nonlocal and singular characteristics inherent in fractional
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TABLE 4. Comparison between numerical and exact solu-
tions for Example 3 with o = 1, m = 100.

t Unum (1) Uexact () Error Relative Error
0.0 | 0.500000 0.500000 0.000000 0.000000
2.0 | 0.880697 0.880797 | 1.00 x 10~* 1.14 x 1074
4.0 | 0.982079 0.982014 | 6.54 x 1075 6.66 x 107
6.0 | 0.997552 0.997527 | 2.48 x 107° 2.49 x 107°
8.0 | 0.999670 0.999665 | 5.57 x 107° 5.58 x 1076
10.0 | 0.999956 0.999955 | 1.05 x 107° 1.05 x 1076
12.0 | 0.999994 0.999994 | 1.83 x 1077 1.83 x 1077
14.0 | 0.999999 0.999999 | 3.01 x 1078 3.01 x 1078
16.0 | 0.99999989 | 0.99999989 | 4.80 x 10~ 4.80 x 107
18.0 | 0.99999999 | 0.99999998 | 7.47 x 10710 7.47 x 10710
20.0 | 1.00000000 | 1.00000000 | 1.14 x 1010 1.14 x 10710

TABLE 5. Approximate solution values for different a at
selected points t € [0, 20] using m = 100.

a=0.5

a=0.75

a=20.9

a=1

O =N O+

12
14
16
18
20

0.5
0.880697
0.982079
0.997552
0.999670
0.999956
0.999994
0.999999
1.000000
1.000000
1.000000

0.5
0.872192
0.958977
0.980594
0.987852
0.991131
0.992964
0.994139
0.994962
0.995572
0.996043

0.5
0.857612
0.926419
0.951659
0.963901
0.970993
0.975603
0.978844
0.981252
0.983117
0.984606

0.5
0.827737
0.872337
0.894632
0.908503
0.918155
0.925352
0.930974
0.935519
0.939289
0.942479

operators. By employing a decomposition technique along with a fixed-
point iterative method, the framework facilitates a stable and precise
computation of the numerical solution. Additionally, the implementa-
tion of the composite trapezoidal rule enhances the method’s usability,
achieving second-order accuracy in the approximation of the regularized
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integral. Noteworthy advantages of this approach lie in its adaptabil-
ity to various nonlinearities, its applicability to both individual scalar
equations and multi-variable systems, and its potential for expansion to
encompass higher-order or multidimensional fractional models. Future
inquiry will focus on the theoretical underpinnings related to stability
and convergence, the adaptation to variable-order and multi-term frac-
tional systems, and the practical application of the method in domains
such as physics, biology, and engineering. Research directions include
theoretical analysis of stability and convergence, extension to variable-
order and multi-term fractional systems, and application to real-world
problems in physics, biology, and engineering.
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