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Abstract

LetMn(N) be a matrix nearring over the nearringN with identity and
let Nn be the direct sum of n-copies of the group (N,+). We introduce
a partial order in the Mn(N)-group Nn corresponding to the partial
order in N -group (over itself). We define a positive cone in Mn(N)-
group Nn and obtain its characterization. For a convex ideal of NN , the
corresponding ideal in Mn(N)-group Nn is described; and conversely, if
I is a convex ideal in Mn(N)-group Nn, then the ideal I∗∗ is convex in
N (over itself). This establishes the one-one correspondence between the
convex ideals of the p.o. N -group NN and those of p.o. Mn(N)-group
Nn.

Math. Subject Classification: 16Y30, 06F25

Key Words and Phrases: nearring, module over a matrix nearring,
partial order

1. Introduction

The notion of partial order in algebraic systems such as in groups,
rings and modules are known [6]. However, the notion of partially or-
dered nearrings (in short, p.o. nearring) was defined by Pilz [8, 9]. Some
developments in the ideal theory of parially ordered nearrings and lattice
ordered nearrings were found in [13]. The purpose of this paper is to
introduce and study the matrix nearrings over partial order nearrings.
Matrix nearrings over arbitrary nearrings were introduced in Meldrum
& Van der Walt [10], where several results about the correspondence be-
tween the two-sided ideals in the base nearring N and those in the matrix
nearring Mn(N) were proved. Later, remarkable developments in matrix
nearrings over arbitrary nearrings were due to Meldrum and Meyer [11],
Meyer [12]. Corresponding to an ideal in the base nearring N , Meldrum
and Meyer [11] have shown that an arbitrary large lattice of ideals in
the matrix nearring, under some suitable assumptions. Recently, several
authors [1, 3, 14] were extensively studied ideal theory in matrix near-
rings. In Bhavanari and Kuncham [4], the uniform and essential ideals
of module over a matrix nearring were introduced and obtained a char-
acterization theorem for finite Goldie dimension. We refer to Meldrum
and Van der Walt [10], for comprehensive literature on matrix nearrings.
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In this paper we introduce the partial order inMn(N)-groupNn based
on the partial order defined inMn(N) as in Tapatee et al. [17]. We define
a positive cone in the Mn(N)-group Nn and prove a characterization
theorem. For a convex ideal of N over N , we establish the corresponding
ideal inMn(N)-groupNn; and conversely, if I is a convex ideal inMn(N)-
group Nn, then the ideal I∗∗ is convex in N (over itself). This establishes
the one-one correspondence between the convex ideal of p.o. N -group
over N and those of p.o. Mn(N)-group Nn.

An algebraic structure (N,+, ·) is called a (right) nearring if: (i)
(N,+) is a group (not necessarily abelian); (ii) (N, ·) is a semigroup; and
(iii) (a + b)c = ac + bc for all a, b, c ∈ N . Obviously, if (N,+, .) is a
right nearring, then 0a = 0 and (−a)b = −ab, for all a, b ∈ N , but in
general a0 ̸= 0 for some a ∈ N . If a0 = 0, for all a ∈ N , then N is called
zero-symmetric, and we denote as N = N0. If aa

′ = a, or a0 = a, for all
a ∈ N , then N is called a constant nearring, we denote as N = Nc.

We use ⇐⇒ for ’́ıf and only if’.

2. Partial order in Mn(N)-group Nn

According to Meldrum & Van der Walt [10]: For a zero-symmetric
right nearring N with identity 1, let Nn denote the direct sum of n
copies of (N,+). The elements of Nn are thought of as column vectors
and written as ⟨r1, · · · , rn⟩. The symbols ij and πj will denote the ith

coordinate injection and jth coordinate projection functions respectively.
The nearring of n×n-matrices overN , denoted byMn(N), is defined to be
the subnearring ofM(Nn), generated by the set of functions {f r

ij : N
n →

Nn | r ∈ N, 1 ≤ i, j ≤ n} where f r
ij⟨r1, r2, · · · , rn⟩ := ⟨s1, s2, · · · , sn⟩ with

si = rrj and sk = 0 if k ̸= i. The elements of Mn(N) will be referred
to as n × n-matrices over N . The zero matrix in Mn(N) is denoted by
0 = 0Mn(N), and zero element in Nn is denoted by 0̄.

Any matrix A can be represented as an expression involving only the
f r
ij. The length of such an expression is the number of f r

ij therein. The
weight w(A) of A is the length of an expression of minimal length for
A. Clearly, if A is represented by an expression of length w(A) ≥ 2,
then from this expression we can find representations for A as either
A = B + C or A = BC, where w(B), w(C)<w(A).

Notation 2.1. We denote the partial order in N , Mn(N) and Nn as
≤, ≤n and ≤Nn , respectively.
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Definition 2.1. Let N be a partially ordered nearring with 1.

(1) For any A,B ∈Mn(N), we define
A ≤n B if and only if πi(Aρ) ≤ πi(Bρ), for all ρ ∈ (PN)

n,
1 ≤ i ≤ n.

(2) Mn(N) is said to be a p.o. matrix nearring if ≤n defined in (1)
is a partial order and satisfy the monotone properties of addition
and multiplication in Mn(N). That is,
(a) A ≥n 0 and B ≥n 0 implies A+B ≥n 0;
(b) A ≤n B and 0 ≤n C implies AC ≤n BC, and

CA ≤n CB.

Definition 2.2. Let Mn(N) be a p.o. matrix nearring and Nn be
a p.o. group. Define ≤Nn on Mn(N)-group Nn by

ρ1 ≤Nn ρ2 if and only if πi(Aρ1) ≤ πi(Aρ2), for allA ∈Mn(N), 1 ≤ i ≤ n.

Nn is said to be a p.o. Mn(N)-group if ≤Nn is a partial order and satisfy
the monotone properties of addition and multiplication on Nn. That is,

(1) ρ1 ≥Nn 0̄ and ρ2 ≥Nn 0̄ implies ρ1 + ρ2 ≥Nn 0̄;
(2) ρ1 ≤Nn ρ2 and 0 ≤n B implies Bρ1 ≤Nn Bρ2;
(3) A ≤n B and 0̄ ≤Nn ρ implies Aρ ≤Nn Bρ,

for all ρ, ρ1, ρ2 ∈ Nn, and A,B ∈Mn(N).

Definition 2.3. The positive cone of a p.o. Mn(N)-group Nn is
defined as PNn = {ρ | ρ ≥Nn 0}.

Lemma 2.4. PNn satisfies

(1) PNn + PNn = PNn ,
(2) PMn(N)PNn ⊆ PNn ,
(3) PNn ∩ PNn = {0},
(4) ρ+ PNn − ρ ⊆ PNn , for all ρ ∈ Nn .

P r o o f. (i) Let ρ ∈ PNn +PNn . Then ρ = ρ1+ ρ2, for some ρ1, ρ2 ∈
PNn . That is, πi(Aρ1) ≥ 0 and πi(Aρ2) ≥ 0, for all A ∈ Mn(N). This
implies πi(Aρ1+Aρ2) = πi(Aρ1)+πi(Aρ2) ≥ 0. Now, since ρ1 ≤Nn ρ1+ρ2
and 0 ≤n A, by monotonicity we have Aρ1 ≤Nn A(ρ1 + ρ2). Similarly,
Aρ2 ≤Nn A(ρ1+ρ2). Then Aρ1+Aρ2 ≤Nn A(ρ1+ρ2)+A(ρ1+ρ2). Hence,
Aρ1 + Aρ2 ≤Nn A(ρ1 + ρ2). Now 0 ≤ πi(Aρ1 + Aρ2) ≤ πi(A(ρ1 + ρ2)) =
πi(Aρ). Therefore, πi(Aρ) ≥ 0. Hence, ρ ∈ PNn , shows that PNn+PNn ⊆
PNn . Conversely, suppose that ρ ∈ PNn . Let ρ = ⟨a1, · · · , an⟩. Then,
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ρ = ⟨a1, · · · , an⟩ = ⟨a1 + 0, · · · , an + 0⟩ = ⟨a1, · · · , an⟩ + ⟨0, · · · , 0⟩ ∈
PNn + PNn . Therefore, PNn ⊆ PNn + PNn . Hence, PNn + PNn = PNn .

(ii) Let A ∈ PMn(N) and ρ ∈ PNn . Let B ∈ PMn(N). Now, since
0 ≤n A, 0 ≤n B in Mn(N), by monotonicity in Mn(N), we get 0 ≤n

BA. Also, since ρ ∈ PNn , by monotonicity in Mn(N)-group Nn,we
have (BA)ρ ∈ PNn . Then, πi(B(Aρ)) = πi(BA)ρ ≥ 0, for all i, and
B ∈ PMn(N). Therefore, Aρ ∈ PNn .

(iii) Clearly, −PNn = {ρ | ρ ≤Nn 0}. Then, PNn ∩ −PNn = {0}.
(iv) Let ρ = ⟨x1, · · · , xn⟩ and ρ1 = ⟨a1, · · · , an⟩ ∈ PNn . Take A ∈

PMn(N). Then, ρ + ρ1 − ρ = ⟨x1 + a1 − x1, · · · , xn + an − xn⟩ ≥Nn 0̄.
Hence, xi + a − xi ∈ PNn . That is, πi(A(ρ + ρ1 − ρ)) ≥ 0. Therefore,
ρ+ ρ1 − ρ ∈ PNn . 2

Proposition 2.5. If N is p.o. N -group, then Nn is a p.o. Mn(N)-
group Nn.

P r o o f. Suppose N is a p.o. N -group. To show ≤Nn is a partial
order relation on Mn(N)-group Nn. We have πi(Aρ) ≤ πi(Aρ), for all
A ∈ Mn(N), ρ ∈ Nn, and for all i. Hence, ρ ≤Nn ρ. Suppose ρ1 ≤Nn ρ2
and ρ2 ≤Nn ρ1. Then πi(Aρ1) ≤ πi(Aρ2) and πi(Aρ2) ≤ πi(Aρ1), for all
A ∈ Mn(N). Hence, πi(Aρ1) = πi(Aρ2), as ≤ is p.o. in N . Therefore,
ρ1 = ρ2. To show ≤Nn is transitive, let ρ1 ≤Nn ρ2 and ρ2 ≤Nn ρ3. That
is, πi(Aρ1) ≤ πi(Aρ2) and πi(Aρ2) ≤ πi(Aρ3). Hence, πi(Aρ1) ≤ πi(Aρ3),
as ≤ is p.o. in N . Therefore, ρ1 ≤Nn ρ3.

Now we show monotonicity, that is:

(1) ρ1 ≤Nn ρ2 and 0 ≤n B implies Bρ1 ≤Nn Bρ2;
(2) A ≤n B and 0̄ ≤Nn ρ implies Aρ ≤Nn Bρ.

Let ρ1 ≤Nn ρ2 in (Nn,+) and 0 ≤n B in Mn(N). Take ρ1 =
⟨x1, · · · , xn⟩ and ρ2 = ⟨y1, · · · , yn⟩. Then ρ1 ≤Nn ρ2 implies πi(Aρ1) ≤
πi(Aρ2), for all A ∈ Mn(N). In particular, πi(Bρ1) ≤ πi(Bρ2), for all i.
This shows that Bρ1 ≤Nn Bρ2.

We use the induction on weight of B. Let w(B) = 1 and B = f r
ij,

r ∈ PN . Then for any xj ≤ yj, by monotonicity in N , rxj ≤ ryj.
Then, ⟨0, · · · , rxj, · · · , 0⟩ ≤n ⟨0, · · · , ryj, · · · , 0⟩ in (Nn,+). That is,
f r
ij⟨x1, · · · , xn⟩ ≤n f

r
ij⟨y1, · · · , yn⟩. Therefore, Bρ1 ≤Nn Bρ2. We assume

that the result is true for w(B) < n. Suppose w(B) = n. ThenB = C+D
or B = CD.

Case (i): Let B = C +D.
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Then,

Bρ1 = (C +D)ρ1

= Cρ1 +Dρ1

≤Nn Cρ2 +Dρ2, by induction hypothesis

= (C +D)ρ2

= Bρ2.

Case (ii): Let B = CD.
Then,

Bρ1 = (CD)ρ1

= C(Dρ1)

≤Nn C(Dρ2), by induction hypothesis

= (CD)ρ2

= Bρ2.

Therefore, Bρ1 ≤Nn Bρ2.

(2) Let A ≤n B inMn(N) and 0 ≤Nn ρ in (Nn,+). Then by definition
of order inMn(N), we have πi(Aρ) ≤ πi(Bρ), for all ρ ∈ PNn , 1 ≤ i ≤ n.
Hence, Aρ ≤Nn Bρ. Therefore, Nn is a p.o. Mn(N)-group Nn. 2

Definition 2.6. Let Nn be a Mn(N)-group and let Ln be an ideal
of Nn. We say that Ln is convex if ρ1, ρ2 ∈ Ln and ρ1 ≤Nn δ ≤Nn ρ2,
then δ ∈ Ln.

Lemma 2.7. If L is a convex ideal in N , then Ln is convex in
Mn(N)-group Nn.

P r o o f. Suppose that L is a convex ideal in N and let ρ1, ρ1 ∈ Ln

and δ ∈ Nn such that ρ1 ≤Nn δ ≤Nn ρ2. Then, πi(Aρ1) ≤ πi(Aδ) ≤
πi(Aρ2), for all A ∈ Mn(N), 1 ≤ i ≤ n. Since L is convex, we have
πi(Aδ) ∈ L, for all 1 ≤ i ≤ n. This implies, Aδ ∈ Ln, for all A ∈Mn(N).
Now for A = f 1

ii and δ = ⟨x1 · · · , xn⟩, we have Aδ = f 1
ii⟨x1, · · · , xn⟩ =

⟨0, · · · , xi, · · · , 0⟩, implies πi(Aδ) = xi ∈ L, for all i. Therefore, δ =
⟨x1, · · · , xn⟩ ∈ Ln. 2

Definition 2.8. [4] For any ideal I of Nn,

I∗∗ = {x ∈ N : x = πjA, for some A ∈ I, 1 ≤ j ≤ n},
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where πj is the j
th projection map from Nn to N .

Lemma 2.9. [4] If I is an ideal of Mn(N)-group Nn, then I∗∗ =
{x ∈ N | ⟨x, · · · , 0⟩ ∈ I} is a left ideal of N .

Lemma 2.10. ([4])

(i) If L is an ideal of Nn, then (L∗∗)
n = L.

(ii) If K is an ideal of NN , then K = (Kn)∗∗.

Lemma 2.11. If L is a convex ideal of Mn(N)-group Nn, then L∗∗
is a convex ideal of N .

P r o o f. Let a ≤ x ≤ b for a, b ∈ L∗∗ and x ∈ N . Then ⟨a, 0, · · · 0⟩,
⟨b, 0, · · · 0⟩ ∈ L. Since x ∈ N , ⟨x, 0, · · · 0⟩ = fx

11⟨1, · · · , 0⟩ ∈ Nn. Again,
since ⟨a, 0, · · · 0⟩ ≤ ⟨x, 0, · · · 0⟩ ≤ ⟨b, 0, · · · 0⟩ and L is convex, we get
⟨x, 0, · · · 0⟩ ∈ L. Hence, x ∈ L∗∗. 2

Theorem 2.12. There is a one-one correspondence between the p.o.
convex ideals of NN and those of Mn(N)-group Nn.

P r o o f. Write P= {I ⊴N N : I is a convex ideal} andQ = {I ⊴Mn(N)

Nn : I is a convex ideal}. Define

Φ : P → Q by Φ(I) = In, and ψ : Q → P by ψ(I) = I∗∗.

By Lemma 2.7 and Lemma 2.11, Φ(I) and ψ(I) are convex ideals of Nn

and NN respectively. Now

(Φ ◦ ψ) (I) = Φ(I∗∗)

= (I∗∗)
n

= I (Lemma 2.10 (i)),

and

(ψ ◦ Φ) (I) = ψ (In)

= (In)∗∗
= I (Lemma 2.10 (ii)).

Therefore, (Φ ◦ ψ) = idQ, and (ψ ◦ Φ) = idP , concludes that P and Q
are isomorphic. 2



398S. Tapatee, B.S. Kedukodi, P. Pallavi, P.K. Harikrishnan, S.P. Kuncham

Proposition 2.13. If f :N N →N N be an N -isomorphism. Then
ψ : Nn → (N)n be an Mn(N)-isomorphism defined by ψ(ρ) = ρ, that
is, if ρ = ⟨a1, · · · , an⟩ ∈ Nn, then ρ = ⟨f(a1), · · · , f(an)⟩ = ⟨a1, · · · , an⟩,
where Nn and N

n
are Mn(N)-group Nn and Mn(N)-group N

n
, respec-

tively.

P r o o f. (i) Let ρ1, ρ2 ∈ Nn, where ρ1 = ⟨a1, · · · , an⟩ and ρ2 =
⟨b1, · · · , bn⟩.

Then,

ψ(ρ1 + ρ2) = ψ(⟨a1, · · · , an⟩+ ⟨b1, · · · , bn⟩)
= ψ(⟨a1 + b1, · · · , an + bn⟩)
= ⟨f(a1 + b1), · · · , f(an + bn)⟩
= ⟨f(a1) + f(b1), · · · , f(an) + f(bn)⟩
= ⟨a1 + b1, · · · , an + bn⟩
= ⟨a1, · · · , an⟩+ ⟨b1, · · · , bn⟩
= ⟨f(a1), · · · , f(an)⟩+ ⟨f(b1), · · · , f(bn)⟩
= ψ(⟨a1, · · · , an⟩) + ψ(⟨b1, · · · , bn⟩)
= ψ(ρ1) + ψ(ρ2)

(ii) Let A ∈ Mn(N), ρ ∈ Nn. Let A = fx
ij, where x ∈ N , and

ρ = ⟨a1, · · · , an⟩.
Then,

ψ(Aρ) = ψ(fx
ij⟨a1, · · · , an⟩)

= ψ(⟨0, · · · , xaj︸︷︷︸
ith

, · · · , 0⟩)

= ⟨f(0), · · · , f(xaj)︸ ︷︷ ︸
ith

, · · · , f(0)⟩

= ⟨0, · · · , xf(aj)︸ ︷︷ ︸
ith

, · · · , 0⟩ (since f is a homomorphism)

= ⟨0, · · · , xaj︸︷︷︸
ith

, · · · , 0⟩
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= fx
ij(⟨a1, · · · , aj, · · · , an⟩)

= fx
ij⟨f(a1), · · · , f(an)⟩

= fx
ijψ(⟨a1, · · · , an⟩)

= fx
ijψ(ρ)

= Aψ(ρ).

Assume that the result is true for w(A) < k. Suppose that w(A) = k.
Then A = C +D or A = CD, where w(C) < k, w(D) < k.

Case-(i): A = C +D. Then, ψ(Aρ) = ψ((C +D)ρ) = ψ(Cρ +Dρ).
Let Cρ = ⟨c1, · · · , cn⟩ and Dρ = ⟨d1, · · · , dn⟩.

Now,

ψ(Cρ+Dρ) = ψ(⟨c1, · · · , cn⟩+ ⟨d1, · · · , dn⟩)
= ψ(⟨c1 + d1, · · · , cn + dn⟩)
= ⟨f(c1 + d1), · · · , f(cn + dn)⟩
= ⟨f(c1) + f(d1), · · · , f(cn) + f(dn)⟩
= ⟨c1 + d1, · · · , cn + dn⟩
= ⟨c1, · · · , cn⟩+ ⟨d1, · · · , dn⟩
= ⟨f(c1), · · · , f(cn)⟩+ ⟨f(d1), · · · , f(dn)⟩
= ψ(⟨c1, · · · , cn⟩) + ψ(⟨d1, · · · , dn⟩)
= ψ(Cρ) + ψ(Dρ), as w(C), w(D) < k

= (C +D)ψ(ρ)

= Aψ(ρ)

Case-(ii): A = CD.
Then,

ψ(Aρ) = ψ((CD)ρ)

= ψ(C(Dρ))

= Cψ(Dρ), as w(C) < k, Dρ ∈ Nn

= CDψ(ρ), as w(D) < k, ρ ∈ Nn.

= Aψ(ρ)

Therefore, ψ is a homomorphism.

Now, to show ψ is one-one, let ρ1, ρ2 ∈ Nn, where ρ1 = ⟨a1, · · · , an⟩,
ρ2 = ⟨b1, · · · , bn⟩ such that ψ(ρ1) = ψ(ρ2).



400S. Tapatee, B.S. Kedukodi, P. Pallavi, P.K. Harikrishnan, S.P. Kuncham

Then, ψ(⟨a1, · · · , an⟩) = ψ(⟨b1, · · · , bn⟩) implies ⟨f(a1), · · · , f(an)⟩
= ⟨f(b1), · · · , f(bn)⟩. 2

3. Conclusion

We have defined the partial order in Mn(N)-group Nn, and proved
one-one correspondence between the convex ideal of N -group (over itself)
and the Mn(N)-group Nn. We also have characterized positive cone in
module over a matrix nearring Mn(N)-group Nn. This can be extended
to study lattice order in matrix nearrings and related properties.
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