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Abstract

In this paper, a discrete version of the preliminary integration method
for the numerical solution of the boundary value problem of a non-
homogeneous biharmonic equation is proposed. Partial derivatives of the
equation are presented in the form of finite double series in Chebyshev
polynomials of the first kind with unknown expansion coefficients. Us-
ing discrete integration formulas that reduce the order of derivatives, the
main equation is ”integrated” four times both with respect to the vari-
able ”x” and the variable ”y”. By adding boundary conditions written
in the form of finite double series to the resulting equation, an algebraic
system is formed for determining the unknown coefficients. The numeri-
cal calculations performed with the selected various trial functions show
the high accuracy and efficiency of the proposed method.
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1. Introduction

Biharmonic equations are often encountered in many areas of en-
gineering and physics, describing some phenomena and have numerous
applications. For this purpose, we will provide a brief overview of lit-
erature sources illustrating the importance of biharmonic equations and
methods for solving these equations.

In the article [2] it is stated that the biharmonic function plays a ma-
jor role in elasticity theory. For example, when solving a plane problem
of elasticity theory using a known biharmonic function, one can immedi-
ately obtain the stress state using the Airy formulas. The author of the
article [8] considers the application of approximation theory methods to
optimality principles in decision theory; in this regard, the asymptotic
properties of solutions to biharmonic equations as approximate functions
are investigated. In the article [9], a complex inhomogeneous biharmonic
equation is used to describe a hydroelastic problem of free oscillations
of a thin plate horizontally separating ideal incompressible fluids of dif-
ferent densities in a rigid cylindrical reservoir of arbitrary cross-section.
The article [11] considers an optimal control problem described by a bi-
harmonic equation with limited boundary conditions. To address the
problem of parameter sensitivity and unsatisfactory accuracy for physics
arising in the areas of scientific computing and engineering applications,
the authors of [12] propose a method for approximating the solution for
a class of fourth-order biharmonic equations with two types of boundary
conditions in unified and non-unified domains. As an application, the
solution of the inhomogeneous biharmonic equation is used to model the
stress-strain state of an isotropic elastic thin plate of polygonal shape
under the action of a transverse load [19]. Advection-diffusion phenom-
ena governing the transfer of chemical substances in porous media, when
diffusion processes are considered, the transfer process is described by
the biharmonic equation [21].

The article [3] discusses solution of the biharmonic equation in mixed
form discretized by a high-order hybrid method. Numerical experiments
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evaluating the efficiency of the proposed iterative algorithm are pre-
sented. Despite the fact that biharmonic equations have many appli-
cations in solid and fluid mechanics, they are difficult to solve due to the
presence of fourth-order partial derivatives [4]. A constructive presenta-
tion of the pre-integration method for solving a homogeneous biharmonic
equation is given in [7]. In [17], a compact fourth-order finite-difference
scheme is proposed for solving biharmonic equations with Dirichlet bound-
ary conditions. In [18], a step-by-step construction of a finite-difference
scheme for an inhomogeneous biharmonic equation with homogeneous
boundary conditions imposed on the desired function and its first-order
partial derivatives is presented. The finite-difference scheme is based on
a square twenty-five-point template and has an implicit character and
approximates the boundary value problem with the second order of ac-
curacy in the grid step. The author claims that the obtained results
correspond to the physical meaning of the problem and are consistent
with similar numerical and approximate-analytical solutions. In the ar-
ticle [20], a new version of the collocation method and least squares
of increased accuracy for the numerical solution of the inhomogeneous
biharmonic equation is proposed and implemented. In numerical exper-
iments, it was found that the solution converges with an increased order
and coincides with the analytical solution of the problem with high accu-
racy. In the article [23], the corresponding discontinuous Galerkin finite
element method is used to solve the biharmonic equation. This method,
judging by its name, uses discontinuous approximations and at the same
time preserves the simple formulation of the corresponding finite element
method. The use of the C-dependent discontinuous Galerkin finite ele-
ment method for solving the biharmonic equation is described in [24].
The Galerkin finite element method without a stabilizer was presented
and analyzed in [25] for the biharmonic equation, which has an extremely
simple formulation from finite elements.

When solving harmonic equations (Laplace, Poisson) by numerical
methods, a system of linear algebraic equations is obtained, the matrix
of which has a very large order. In addition, the matrix of the alge-
braic system is sparse, i.e. it has many zero elements and, finally, it is
an ill-conditioned matrix, i.e. the ratio of the largest eigenvalue of the
matrix to its smallest eigenvalue is very large. In the case of biharmonic
(doubly harmonic) equations, the situation is aggravated, the numeri-
cal solution of such equations encounters serious difficulties and many
numerical methods become practically uneconomical. Iterative methods
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can be used to solve biharmonic equations, however, the number of iter-
ations in which is often called very large.

In this regard, the development of a highly accurate and efficient di-
rect method for the numerical solution of the inhomogeneous biharmonic
equation is of undoubted interest.

Along with the above methods, it is possible to apply a discrete ver-
sion of the preliminary integration method [1, 13, 16]. The main ad-
vantage of the proposed method is the high rate of convergence of the
calculation results. Due to the high accuracy of the method, when us-
ing it with a smaller number of Chebyshev polynomials, it is possible to
achieve the same accuracy as in other methods. Or, in other words, with
the same amount of calculations, it is possible to study a biharmonic
equation with higher values of characteristic parameters. To ensure the
efficiency of the method when calculating double finite series by Cheby-
shev polynomials, it is possible to apply the fast discrete Fourier cosine
transform [5, 6, 10]. The use of Chebyshev polynomials for numerical
modeling of the eigenvalue problem for a nonlinear ordinary differential
equation with a small parameter at the highest derivative and for a sys-
tem of similar equations is given in [14, 15]. The idea of choosing trial
functions is presented in [12].

2. Statement of the problem

A numerical solution of the biharmonic equation be required in the
region D = {−1 ≤ x, y ≤ 1}

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
= −f(x, y), −1 < x, y < 1, (1)

with the following boundary conditions:

u(−1, y) = 0, u(1, y) = 0,

u(x,−1) = 0, u(x, 1) = 0,

∂u
∂x
(−1, y) = 0, ∂u

∂x
(1, y) = 0,

∂u
∂y
(x,−1) = 0, ∂u

∂y
(x, 1) = 0,

(2)

where f(x, y) is a given function determined by the following formula

f(x, y) = −(
∂4ue

∂x4
+ 2

∂4ue

∂x2∂y2
+

∂4ue

∂y4
). (3)
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For the numerical solution of problem (1) - (2), a discrete version of
the preliminary integration method is used. To check the convergence
and order of accuracy of the method used, we use the method of trial func-
tions [22]. The essence of this method is as follows. A certain function is
selected ue(x, y) = uexact(x, y), it can be chosen arbitrarily, but so that
the boundary conditions (2) are satisfied. Substituting it into equation
(1), we find the right-hand side of (3). The resulting problem is solved by
a discrete version of the preliminary integration method, and the approx-
imate solution ua(x, y) = uapproximate(x, y) is compared with the known
function ue(x, y) in the collocation nodes of the Chebyshev polynomials
(xl, yk), where xl = cos πl

N
, (l = 0, 1, ..., N), yk = cos πk

M
, (k = 0, 1, ...,M).

Thus, as trial functions for problem (1) - (2), we consider two functions
of the following type:

u
(1)
e (x, y) = (1− x2)

2
(1− y2)

2
eA sinx sin y,

u
(2)
e (x, y) = (1− x2)

2
(1− y2)

2
eA(x+y).

(4)

For the selected functions (4), the right-hand sides of the form (3) re-

spectively have the form: for the first trial function u
(1)
e (x, y)

f (1)(x, y) = −eA sinx sin y((y2 − 1)
2 × (A sin y(3(x2 − 1)

2

×sin2x+ sinx(−6A2(x2 − 1)
2
sin2ycos2x

−48Ax(x2 − 1) sin y cosx+ (x4 − 74x2 + 25))

+A sin ycos2x(A2(x2 − 1)
2
sin2ycos2x

+16Ax(x2 − 1) sin y cosx− 4(x4 − 20x2 + 7))

+16x(7− x2) cosx) + 24) + 2× ((A(y2 − 1)
2

×(x2 − 1)(−2A(x2 − 1) cos 2ycos2x
− sinx sin y(x2 − 1) + 8x cosx sin y)+

+A(y2 − 1)
2
sinx sin y(A(x2 − 1)

2
sin y

×(−cos2x sin y + sinx) + 8Ax(1− x2) cosx sin y
−12x2 + 4)− A(y2 − 1) sinx cos y(A sinx(y2 − 1)

× cos y + 8y)(−A2(x2 − 1)
2
cos2xsin2y

+A(x2 − 1)
2
sinx sin y − 8Ax(x2 − 1) cosx sin y

−12x2 + 4)− 4(3y2 − 1)(−A2(x2 − 1)
2
cos2x

×sin2y + A(x2 − 1)
2
sinx sin y − 8Ax(x2 − 1)

× cosx sin y − 12x2 + 4)− A(y2 − 1)(x2 − 1) cos y
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×(2A(y2 − 1) sinx cos y + 8y)(−2A(x2 − 1)
×cos2x sin y + (x2 − 1) sinx− 8x cosx)))

+(x2 − 1)
2
(A sinx(3(y2 − 1)

2
sin2y

+sin y(−6A2(y2 − 1)
2
sin2xcos2y − 48Ay

×(y2 − 1) sinx cos y + (y4 − 74y2 + 25))

+A sinxcos2y(A2(y2 − 1)
2
sin2xcos4y

+16Ay(y2 − 1) sinxcos3y − 4(y4 − 20y2 + 7))
+16y(7− y2) cos y) + 24)),

(5)

for the second trial function u
(2)
e (x, y)

f (2)(x, y) = −(eA(x+y)(A(y2 − 1)
2
(A2x3(Ax+ 12)

+2A(18− A2)x2 + 12(2− A2)x+ A(A2 − 12))

+4(y2 − 1)
2
(A2x2(Ax+ 9) + A(18− A2)x

+3(2− A2))) + +2× (eA(x+y) × ((A2(x2 − 1)
×(Ax2 + 4x− A) + 2Ax(Ax2 + 4x− A)

+A(2Ax+ 4)(x2 − 1))(y2 − 1)
2
+ 4(y2 − 1)

×(4(x2 − 1)(Ax2 + 4x− A)y + 2x(Ax2 + 4x− A)y

+(2Ax+ 4)(x2 − 1)y))) + eA(x+y)(A(x2 − 1)
2
(A2y3

×(Ay + 12) + 2A(18− A2)y2 + 12(2− A2)y

+A(A2 − 12)) + 4(x2 − 1)
2
(A2y2(Ay + 9)

+A(18− A2)y + 3(2− A2)))).

3. Solution method

The essence of the discrete method of preliminary integration is as
follows. All partial derivatives in equation (1) and the right-hand side are
presented in the form of finite double series in Chebyshev polynomials
of the first kind with unknown expansion coefficients. Substituting these
series into equation (1) and equating the coefficients at the same degrees
of the polynomials, we obtain a system of linear algebraic equations.
This system of preliminary fourfold “integrates” with respect to the vari-
able ”x” and with respect to the variable ”y” using discrete formulas for
reducing the degrees of derivatives and a new system of equations is ob-
tained. Adding to this system the equations obtained from the boundary
conditions (2) written through finite series in Chebyshev polynomials, we
obtain a system of algebraic equations for determining the coefficients of
aij the approximate solution ua(x, y).
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Thus, we have the following finite series:

∂4ua

∂x4
=

N∑
i=0

′
M∑
j=0

′a
(4x)
ij Ti(x)Tj(y),

∂4ua

∂x2∂y2
=

N∑
i=0

′
M∑
j=0

′a
(2x,2y)
ij Ti(x)Tj(y),

∂4ua

∂y4
=

N∑
i=0

′
M∑
j=0

′a
(4y)
ij Ti(x)Tj(y),

f(x, y) =
N∑
i=0

′
M∑
j=0

′gijTi(x)Tj(y),

(6)

where the primes above the sums mean that the coefficient aij is taken
with the multiplier 1

2
when the index i or j is zero, is taken with the

multiplier 1
4
when i = j = 0, simultaneously. Now substituting the series

(6) into equation (1), we have

N∑
i=0

′
M∑
j=0

′a
(4x)
ij Ti(x)Tj(y) +

N∑
i=0

′
M∑
j=0

′a
(2x,2y)
ij Ti(x)Tj(y)

+
N∑
i=0

′
M∑
j=0

′a
(4y)
ij Ti(x)Tj(y) = −

N∑
i=0

′
M∑
j=0

′gijTi(x)Tj(y).

Then, equating the coefficients of the same degrees of polynomials, we
have an algebraic system

a
(4x)
ij + a

(2x,2y)
ij + a

(4y)
ij = −gij,

i = 0, 1, 2, ..., N,
j = 0, 1, 2, ...,M.

(7)

The order of derivatives in system (7) can be reduced using the following
discrete integration formulas:

a
((k−1)x)
ij =

a
(kx)
i−1,j − a

(kx)
i+1,j

2i
, a

((k−1)y)
ij =

a
(ky)
i,j−1 − a

(ky)
i,j+1

2j
. (8)

Using these formulas, system (7) is “integrated” four times with respect
to the variable ”x” and with respect to the variable ”y”. For example,
at the first step of integration with respect to the variable ”x” we have:

a
(3x)
ij + 2a

(x,2y)
ij +

a
(4y)
i−1,j − a

(4y)
i+1,j

2i
= −

(
gi−1,j − gi+1,j

2i

)
.

After performing all integration operations and the requirement to satisfy
the boundary conditions (2) for the approximate solution
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ua(x, y) =
N∑
i=0

′
M∑
j=0

′aijTi(x)Tj(y) (9)

leads to the following system of linear algebraic equations for determining
the unknown expansion coefficients aij(i = 0, 1, 2, ..., N, j = 0, 1, 2, ...,M):



1
2
ai,0 + ai,2 + ai,4 + . . .+

+ai,2M = 0,
ai,1 + ai,3 + ai,5 + · · ·+
+ai,2M−1 = 0,
4ai,2 + 16ai,4 + 36ai,6 + · · ·+
+(2M)2ai,2M = 0,
ai,1 + 9ai,3 + 25ai,5 + · · ·+
+(2M − 1)2ai,2M−1 = 0,


(i = 0, N),

1
2
a0,j + a2,j + a4,j + · · ·+

+a2N,j = 0,
a1,j + a3,j + · · ·+ a2N−1,j = 0,
4a2,j + 16a4,j + 36a6,j + · · ·+
+(2N)2a2N,j = 0,

 (j = 4,M),

(10)
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

a1,j + 9a3,j + 25a5,j + · · ·+
+(2N − 1)2a2N−1,j = 0, (j = 4,M),
K1(j

2 − 1)((j + 1)(j + 2)(j + 3)ai,j−4 + (j − 1)×
×(j − 2)(j − 3)ai,j+4)− (K1(j

2 − 1)(j + 1)(j + 2)×
×(j + 3) + Z1)ai,j−2 − (K1(j

2 − 1)(j − 1)(j − 2)×
×(j − 3) + Z2)ai,j+2 + (Z1 + Z2)ai,j +K2(j

2 − 9)×
×(i+ 1)(j + 1)ai−2,j−2 − 2K2j(j

2 − 9)(i+ 1)ai−2,j+
+K2(j

2 − 9)(i+ 1)(j − 1)ai−2,j+2 +K2(j
2 − 9)×

×(i− 1)(j + 1)ai+2,j−2 − 2K2j(j
2 − 9)(i− 1)ai+2,j+

+K2(j
2 − 9)(i− 1)(j − 1)ai+2,j+2 + 16j2(j2 − 1)

2×
×(j2 − 4)(j2 − 9)(C1T1 − C2T2 + C3T3)) = −C1×
×(i− 1)j((j + 1)(j + 2)(j + 3)(j2 − 1)gi−4,j−4−
−4(j2 − 1)(j2 − 4)(j + 3)gi−4,j−2 + 6j(j2 − 1)×
×(j2 − 9)gi−4,j − 4(j2 − 1)(j2 − 4)(j − 3)gi−4,j+2+
+(j − 1)(j − 2)(j − 3)(j2 − 1)gi−4,j+4)+
+j(2c1(i− 2) + C2(i+ 1))((j + 1)(j + 2)(j + 3)×
×(j2 − 1)gi−2,j−4 − 4(j2 − 1)(j2 − 4)(j + 3)gi−2,j−2+
+6j(j2 − 1)(j2 − 9)gi−2,j − 4(j2 − 1)(j2 − 4)×
×(j − 3)gi−2,j+2 + (j − 1)(j − 2)(j − 3) · (j2 − 1)×
×gi−2,j+4)− j(C1(i− 3) + 2C2i+ C3(i+ 3))((j + 1)×
(j + 2)(j + 3)(j2 − 1)gi,j−4 − 4(j2 − 1)(j2 − 4)×
×(j + 3)gi,j−2 + 6j(j2 − 1)(j2 − 9)gi,j − 4(j2 − 1)×
×(j2 − 4)(j − 3)gi,j+2 + (j − 1)(j − 2)(j − 3)×
×(j2 − 1)gi,j+4) + j(C2(i− 1) + 2C3(i+ 2)) · ((j + 1)×
×(j + 2)(j + 3)(j2 − 1)gi+2,j−4 − 4(j2 − 1)(j2 − 4)×
×(j + 3)gi+2,j−2 + 6j(j2 − 1)(j2 − 9)gi+2,j−
−4(j2 − 1)(j2 − 4)(j − 3)gi+2,j+2 + (j − 1)(j − 2)×
×(j − 3)(j2 − 1)gi+2,j+4)− C3(i+ 1)j((j + 1)(j + 2)×
×(j + 3)(j2 − 1)gi+4,j−4 − 4(j2 − 1)(j2 − 4)(j + 3)×
×gi+4,j−2 + 6j(j2 − 1)(j2 − 9)gi+4,j − 4(j2 − 1)×
×(j2 − 4)(j − 3)gi+4,j+2 + (j − 1) · (j − 2)(j − 3)×
×(j2 − 1)gi+4,j+4).

(10′)
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Here

K1 = 16i2j(i2 − 1)
2
(i2 − 4)(i2 − 9),

K2 = 32ij(i2 − 1)(i2 − 4)(i2 − 9)(j2 − 1)(j2 − 4),

T1 = (i− 1)ai−4,j − 2(i− 2)ai−2,j + (i− 3)ai,j,

T2 = (i+ 1)ai−2,j − 2iai,j + (i− 1)ai+2,j,

T3 = (i+ 3)ai,j − 2(i+ 2)ai+2,j + (i+ 1)ai+4,j,

Z1 = (3K1(j − 1)(j + 2) + 2K2i)(j
2 − 9)(j + 1),

Z2 = (3K1(j − 2)(j + 1) + 2K2i)(j
2 − 9)(j − 1),

C1 = i(i+ 1)2(i+ 2)(i+ 3),

C2 = 2i(i2 − 4)(i2 − 9),

C3 = i(i− 1)2(i− 2)(i− 3).

To determine the right-hand side gij of equation (7) from the known
function f(x, y)in the collocation nodes of the Chebyshev polynomials
xl = cos πl

N
(l = 0, 1, ..., N), yk = cos πk

M
(k = 0, 1, ...,M) there is a discrete

inverse transformation [14-15]:

gij =
4

MNcicj

N∑
l=0

M∑
k=0

( 1
clck

f(xl, yk)Ti(xl)Tj(yk)),

i = 0, 1, ..., N, j = 0, 1, ...,M,

(11)

where c0 = cN = cM = 2, cm = 1 at m = 1, 2, ..., N − 1, ct = 1 at
t = 1, 2, ...,M − 1. It is convenient to write the systems (10) in matrix
form

Ax = b, (12)

where is Aa square matrix of order K ×K, here K = (N + 1)×
× (M + 1) consisting of the coefficients of systems (10),

xT = (a00, a10, ..., aN0, a01, a11, ..., aN1, ..., a0M , a1M , ..., aNM)

is the desired vector for the unknown expansion coefficients, b is the
right-hand side of systems (10). Solving system (10), the coefficients
are determined, then the values of the exact solution are calculated us-
ing formulas (4), and the values of the approximate solution in aij(i =
0, 1, ..., N ; j = 0, 1, ...,M) the collocation nodes of the Chebyshev poly-
nomials (xl, yk) are calculated using formula (9).
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4. Calculation results

Let us present the results of numerical calculations solution of the
boundary value problem for the biharmonic equation (1) - (2), using the
above-described discrete version of the preliminary integration method.

Table 1 shows the results of comparison of the exact and approximate

solutions for the selected trial functions. u
(1)
e (x, y), u

(2)
e (x, y) determined

by formula (4) in the case when the exponent of the exponential function
is A = 1, 3, and the number of approximating Chebyshev polynomials
both for the variable “x” and for the variable “y ” is equal to 30, i.e.
N = M = 30. It is evident that with the selected values of the charac-
teristic parameters, approximate solutions to problem (1) - (2) u

(1)
a (x, y)

are u
(2)
a (x, y) found with sufficiently high accuracy, while the absolute

error in specific collocation nodes is a value of the order of 10−14.

Table 1. Comparison of absolute errors for exact and approximate
solutions

Calculation results for the exact solution u
(1)
e (x, y)

A

xl

l = 0, N
at l

yk
k = 0,M at
k

Values of the exact solution Approximate solution values Absolute error

1
10 10 0.00010037975586234 0.00010037975586233 7.94 · 10−18

20 20 0.4736033572362967 0.4736033572362972 4.99 · 10−16

3
10 10 0.0002242935716098 0.0002242935716095 3.09 · 10−16

20 20 0.69208265178736 0.69208265178737 6.77 · 10−15

Calculation results for the exact solution u
(2)
e (x, y)

1
10 10 0.000299311498722039 0.000299311498722043 4.34 · 10−18

20 20 0.970138852140147 0.970138852140146 4.44 · 10−16

3
10 10 0.00594632477949 0.00594632477947 2.05 · 10−14

20 20 5.94860783552934 5.94860783552933 1.24 · 10−14

The results of Table 1 are most clearly illustrated in Fig. 1-4. Fig. 1
shows the graphs of the exact and approximate solution for the selected

trial function u
(1)
e (x, y), when the values of the parameter A = 1 and the

number of polynomials are equal to N = M = 30.

The graphs of the exact and approximate solutions for the function

are u
(1)
e (x, y) shown A = 3, N = M = 30 in Fig. 2.

Fig. 3 shows graphs of the exact and approximate solution for the

function u
(2)
e (x, y) with the following values of characteristic parameters:

A = 1, N = M = 30.

The dynamics of the exact and approximate solutions for the function

u
(2)
e (x, y) are A = 3, N = M = 30 shown in Fig. 4.
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Figure 1. Graphs of the exact and approximate solution

for the function u
(1)
e (x, y) at A = 1.
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Figure 2. Graphs of the exact and approximate solution

for the function u
(1)
e (x, y) at A = 3.

Table 2 shows the maximum absolute errors for the selected trial func-
tions (4) in the collocation nodes of the Chebyshev polynomials (xl, yk)
for the following values of the characteristic parameters: A = 1, 3, N =
M = 5÷30. The maximum absolute error is determined by the following
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Figure 3. Graphs of the exact and approximate solution

for the function u
(2)
e (x, y) at A = 1.
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Figure 4. Graphs of the exact and approximate solution

for the function u
(2)
e (x, y) at A = 3.

formula
∆ = max

0≤l≤N
0≤k≤M

∣∣u(p)
e (xl, yk)− u(p)

a (xl, yk)
∣∣ , p = 1, 2.
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Table 2. Maximum absolute errors of specific nodes for different val-
ues of characteristic parameters A,N,M .

A N M

xl

l = 0, N

at l

yk

k = 0,M

at k

Trial function u
(1)
e (x, y)

xl

l = 0, N

at l

yk

k = 0,M

at k

Trial function u
(2)
e (x, y)

1

5 5 2 3 0.01 2 2 0.25
10 10 3 7 1.21 · 10−5 3 4 5.24 · 10−6

15 15 11 11 4.81 · 10−9 7 7 6.58 · 10−12

20 20 15 15 5.92 · 10−13 8 10 2.67 · 10−15

25 25 15 10 1.67 · 10−15 12 12 3.78 · 10−15

30 30 19 14 1.78 · 10−15 14 12 3.55 · 10−15

3

5 5 2 3 0.05 1 2 2.36
10 10 7 7 0.03 · 10−2 3 3 0.03
15 15 11 4 4.31 · 10−7 6 6 6.09 · 10−6

20 20 5 5 3.98 · 10−10 6 6 8.19 · 10−11

25 25 6 6 1.11 · 10−13 25 12 6.16 · 10−13

30 30 8 14 1.03 · 10−14 20 15 4.11 · 10−13

From the results presented in Table 2 it is evident that with a gradual
increase in the number of approximating Chebyshev polynomials with a
step equal to 5, the maximum absolute error for both trial functions
decreases at a geometric progression rate.

5. Conclusion

For the numerical solution of the biharmonic equation, a highly ac-
curate and efficient method is proposed - a discrete version of the pre-
liminary integration method.

An algorithm for solving the proposed method has been developed. A
large-scale computational experiment has been conducted with different
values characteristic parameters and for different selected trial functions
shows that the maximum absolute error decreases at a geometric progres-
sion rate with an increase in the number of approximating Chebyshev
polynomials.
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